基于深度学习的实时无线电信号调制分类与可视化

IF 5.3 3区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Precision Engineering and Manufacturing-Green Technology Pub Date : 2023-10-08 DOI:10.5815/ijem.2023.05.04
S. Rajesh, S. Geetha, Babu Sudarson S, Ramesh S
{"title":"基于深度学习的实时无线电信号调制分类与可视化","authors":"S. Rajesh, S. Geetha, Babu Sudarson S, Ramesh S","doi":"10.5815/ijem.2023.05.04","DOIUrl":null,"url":null,"abstract":"Radio Modulation Classification is implemented by using the Deep Learning Techniques. The raw radio signals where as inputs and can automatically learn radio features and classification accuracy. The LSTM (Long short-term memory) based classifiers and CNN (Convolutional Neural Network) based classifiers were proposed in this paper. In the proposed work, two CNN based classifiers are implemented such as the LeNet classifier and the ResNet classifier. For visualizing the radio modulation, a class activation vector (w) is used. Finally in the proposed work, it is performed the classification by using the Deep learning models like CNN and LSTM based modulation classifiers. These deep learning models extract the important radio features that are used for classification. Here, the bench mark dataset RadioML2016.10a is used. This is an open dataset which contains the modulated signal I and Q values fewer than ten modulation categories. After evolution of proposed model with bench mark dataset, it is applied with real time data collected through the SDR Dongle receiver. From the obtained real time signal, the modulation categories have been classified and visualized the radio features extracted from the radio modulation classifiers.","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"27 1","pages":"0"},"PeriodicalIF":5.3000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning based Real Time Radio Signal Modulation Classification and Visualization\",\"authors\":\"S. Rajesh, S. Geetha, Babu Sudarson S, Ramesh S\",\"doi\":\"10.5815/ijem.2023.05.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio Modulation Classification is implemented by using the Deep Learning Techniques. The raw radio signals where as inputs and can automatically learn radio features and classification accuracy. The LSTM (Long short-term memory) based classifiers and CNN (Convolutional Neural Network) based classifiers were proposed in this paper. In the proposed work, two CNN based classifiers are implemented such as the LeNet classifier and the ResNet classifier. For visualizing the radio modulation, a class activation vector (w) is used. Finally in the proposed work, it is performed the classification by using the Deep learning models like CNN and LSTM based modulation classifiers. These deep learning models extract the important radio features that are used for classification. Here, the bench mark dataset RadioML2016.10a is used. This is an open dataset which contains the modulated signal I and Q values fewer than ten modulation categories. After evolution of proposed model with bench mark dataset, it is applied with real time data collected through the SDR Dongle receiver. From the obtained real time signal, the modulation categories have been classified and visualized the radio features extracted from the radio modulation classifiers.\",\"PeriodicalId\":14238,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijem.2023.05.04\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijem.2023.05.04","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

利用深度学习技术实现无线电调制分类。将原始无线电信号作为输入,并能自动学习无线电特征和分类精度。本文提出了基于LSTM(长短期记忆)分类器和基于CNN(卷积神经网络)分类器。在本文提出的工作中,实现了两个基于CNN的分类器:LeNet分类器和ResNet分类器。为了使无线电调制可视化,使用了类激活向量(w)。最后,利用CNN和基于LSTM的调制分类器等深度学习模型进行分类。这些深度学习模型提取用于分类的重要无线电特征。这里使用基准数据集RadioML2016.10a。这是一个开放的数据集,其中包含调制信号I和Q值少于10个调制类别。将该模型与基准数据集进行演化后,应用于通过SDR加密狗接收机采集的实时数据。从获取的实时信号中,对调制类别进行分类,并将从无线电调制分类器中提取的无线电特征可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning based Real Time Radio Signal Modulation Classification and Visualization
Radio Modulation Classification is implemented by using the Deep Learning Techniques. The raw radio signals where as inputs and can automatically learn radio features and classification accuracy. The LSTM (Long short-term memory) based classifiers and CNN (Convolutional Neural Network) based classifiers were proposed in this paper. In the proposed work, two CNN based classifiers are implemented such as the LeNet classifier and the ResNet classifier. For visualizing the radio modulation, a class activation vector (w) is used. Finally in the proposed work, it is performed the classification by using the Deep learning models like CNN and LSTM based modulation classifiers. These deep learning models extract the important radio features that are used for classification. Here, the bench mark dataset RadioML2016.10a is used. This is an open dataset which contains the modulated signal I and Q values fewer than ten modulation categories. After evolution of proposed model with bench mark dataset, it is applied with real time data collected through the SDR Dongle receiver. From the obtained real time signal, the modulation categories have been classified and visualized the radio features extracted from the radio modulation classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.50%
发文量
65
审稿时长
5.3 months
期刊介绍: Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.
期刊最新文献
Online Vibration Detection in High-Speed Robotic Milling Process Based on Wavelet Energy Entropy of Acoustic Emission The Abrasion Robotic Solutions: A review Integration of Cu-Doped TiO2 Nanoparticles on High Surface UV-Laser-Induced Graphene for Enhanced Photodegradation, De-icing, and Anti-bacterial Surface Applications Flux Filling Rate Effect on Weld Bead Deposition of Recycled Titanium Chip Tubular Wire Bipolar Current Collectors of Carbon Fiber Reinforced Polymer for Laminates of Structural Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1