利用人口统计学和人体测量法预测骨矿物质密度和骨折风险的新型无创方法

IF 2.3 Q2 SPORT SCIENCES Sports Medicine and Health Science Pub Date : 2023-12-01 DOI:10.1016/j.smhs.2023.09.003
Justin Aflatooni , Steven Martin , Adib Edilbi , Pranav Gadangi , William Singer , Robert Loving , Shreya Domakonda , Nandini Solanki , Patrick C. McCulloch , Bradley Lambert
{"title":"利用人口统计学和人体测量法预测骨矿物质密度和骨折风险的新型无创方法","authors":"Justin Aflatooni ,&nbsp;Steven Martin ,&nbsp;Adib Edilbi ,&nbsp;Pranav Gadangi ,&nbsp;William Singer ,&nbsp;Robert Loving ,&nbsp;Shreya Domakonda ,&nbsp;Nandini Solanki ,&nbsp;Patrick C. McCulloch ,&nbsp;Bradley Lambert","doi":"10.1016/j.smhs.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Fractures are costly to treat and can significantly increase morbidity. Although dual-energy x-ray absorptiometry (DEXA) is used to screen at risk people with low bone mineral density (BMD), not all areas have access to one. We sought to create a readily accessible, inexpensive, high-throughput prediction tool for BMD that may identify people at risk of fracture for further evaluation. Anthropometric and demographic data were collected from 492 volunteers (♂275, ♀217; [44 ​± ​20] years; Body Mass Index (BMI) = [27.6 ​± ​6.0] kg/m<sup>2</sup>) in addition to total body bone mineral content (BMC, kg) and BMD measurements of the spine, pelvis, arms, legs and total body. Multiple-linear-regression with step-wise removal was used to develop a two-step prediction model for BMC followed by BMC. Model selection was determined by the highest adjusted <em>R</em><sup>2</sup>, lowest error of estimate, and lowest level of variance inflation (<em>α</em> ​= ​0.05). Height (HTcm), age (years), sex<sup>m=1, f=0</sup>, %body fat (%fat), fat free mass (FFMkg), fat mass (FMkg), leg length (LLcm), shoulder width (SHWDTHcm), trunk length (TRNKLcm), and pelvis width (PWDTHcm) were observed to be significant predictors in the following two-step model (<em>p</em> ​&lt; ​0.05). Step1: BMC (kg) = (0.006 3 <span><math><mrow><mo>×</mo></mrow></math></span> HT) ​+ ​(−0.002 4 <span><math><mrow><mo>×</mo></mrow></math></span> AGE) ​+ ​(0.171 2 <span><math><mrow><mo>×</mo></mrow></math></span> SEX<sup>m=1, f=0</sup>) ​+ ​(0.031 4 <span><math><mrow><mo>×</mo></mrow></math></span> FFM) ​+ ​(0.001 <span><math><mrow><mo>×</mo></mrow></math></span> FM) ​+ ​(0.008 9 <span><math><mrow><mo>×</mo></mrow></math></span> SHWDTH) ​+ ​(−0.014 5 <span><math><mrow><mo>×</mo></mrow></math></span> TRNKL) ​+ ​(−0.027 8 <span><math><mrow><mo>×</mo></mrow></math></span> PWDTH) - 0.507 3; <em>R</em><sup>2</sup> ​= ​0.819, <em>SE</em> ​± ​0.301. Step2: Total body BMD (g/cm<sup>2</sup>) = (−0.002 8 <span><math><mrow><mo>×</mo></mrow></math></span> HT) ​+ ​(−0.043 7 <span><math><mrow><mo>×</mo></mrow></math></span> SEX<sup>m=1, f=0</sup>) ​+ ​(0.000 8 <span><math><mrow><mo>×</mo></mrow></math></span> %FAT) ​+ ​(0.297 0 <span><math><mrow><mo>×</mo></mrow></math></span> BMC) ​+ ​(−0.002 3 <span><math><mrow><mo>×</mo></mrow></math></span> LL) ​+ ​(0.002 3 <span><math><mrow><mo>×</mo></mrow></math></span> SHWDTH) ​+ ​(−0.002 5 <span><math><mrow><mo>×</mo></mrow></math></span> TRNKL) ​+ ​(−0.011 3 <span><math><mrow><mo>×</mo></mrow></math></span> PWDTH) ​+ ​1.379; <em>R</em><sup><em>2</em></sup> ​= ​0.89, <em>SE</em> ​± ​0.054. Similar models were also developed to predict leg, arm, spine, and pelvis BMD (<em>R</em><sup><em>2</em></sup> ​= ​0.796–0.864, <em>p</em> ​&lt; ​0.05). The equations developed here represent promising tools for identifying individuals with low BMD at risk of fracture who would benefit from further evaluation, especially in the resource or time restricted setting.</p></div>","PeriodicalId":33620,"journal":{"name":"Sports Medicine and Health Science","volume":"5 4","pages":"Pages 308-313"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266633762300063X/pdfft?md5=026f0f312ea15c956c0350e8f5526b50&pid=1-s2.0-S266633762300063X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel non-invasive method for predicting bone mineral density and fracture risk using demographic and anthropometric measures\",\"authors\":\"Justin Aflatooni ,&nbsp;Steven Martin ,&nbsp;Adib Edilbi ,&nbsp;Pranav Gadangi ,&nbsp;William Singer ,&nbsp;Robert Loving ,&nbsp;Shreya Domakonda ,&nbsp;Nandini Solanki ,&nbsp;Patrick C. McCulloch ,&nbsp;Bradley Lambert\",\"doi\":\"10.1016/j.smhs.2023.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fractures are costly to treat and can significantly increase morbidity. Although dual-energy x-ray absorptiometry (DEXA) is used to screen at risk people with low bone mineral density (BMD), not all areas have access to one. We sought to create a readily accessible, inexpensive, high-throughput prediction tool for BMD that may identify people at risk of fracture for further evaluation. Anthropometric and demographic data were collected from 492 volunteers (♂275, ♀217; [44 ​± ​20] years; Body Mass Index (BMI) = [27.6 ​± ​6.0] kg/m<sup>2</sup>) in addition to total body bone mineral content (BMC, kg) and BMD measurements of the spine, pelvis, arms, legs and total body. Multiple-linear-regression with step-wise removal was used to develop a two-step prediction model for BMC followed by BMC. Model selection was determined by the highest adjusted <em>R</em><sup>2</sup>, lowest error of estimate, and lowest level of variance inflation (<em>α</em> ​= ​0.05). Height (HTcm), age (years), sex<sup>m=1, f=0</sup>, %body fat (%fat), fat free mass (FFMkg), fat mass (FMkg), leg length (LLcm), shoulder width (SHWDTHcm), trunk length (TRNKLcm), and pelvis width (PWDTHcm) were observed to be significant predictors in the following two-step model (<em>p</em> ​&lt; ​0.05). Step1: BMC (kg) = (0.006 3 <span><math><mrow><mo>×</mo></mrow></math></span> HT) ​+ ​(−0.002 4 <span><math><mrow><mo>×</mo></mrow></math></span> AGE) ​+ ​(0.171 2 <span><math><mrow><mo>×</mo></mrow></math></span> SEX<sup>m=1, f=0</sup>) ​+ ​(0.031 4 <span><math><mrow><mo>×</mo></mrow></math></span> FFM) ​+ ​(0.001 <span><math><mrow><mo>×</mo></mrow></math></span> FM) ​+ ​(0.008 9 <span><math><mrow><mo>×</mo></mrow></math></span> SHWDTH) ​+ ​(−0.014 5 <span><math><mrow><mo>×</mo></mrow></math></span> TRNKL) ​+ ​(−0.027 8 <span><math><mrow><mo>×</mo></mrow></math></span> PWDTH) - 0.507 3; <em>R</em><sup>2</sup> ​= ​0.819, <em>SE</em> ​± ​0.301. Step2: Total body BMD (g/cm<sup>2</sup>) = (−0.002 8 <span><math><mrow><mo>×</mo></mrow></math></span> HT) ​+ ​(−0.043 7 <span><math><mrow><mo>×</mo></mrow></math></span> SEX<sup>m=1, f=0</sup>) ​+ ​(0.000 8 <span><math><mrow><mo>×</mo></mrow></math></span> %FAT) ​+ ​(0.297 0 <span><math><mrow><mo>×</mo></mrow></math></span> BMC) ​+ ​(−0.002 3 <span><math><mrow><mo>×</mo></mrow></math></span> LL) ​+ ​(0.002 3 <span><math><mrow><mo>×</mo></mrow></math></span> SHWDTH) ​+ ​(−0.002 5 <span><math><mrow><mo>×</mo></mrow></math></span> TRNKL) ​+ ​(−0.011 3 <span><math><mrow><mo>×</mo></mrow></math></span> PWDTH) ​+ ​1.379; <em>R</em><sup><em>2</em></sup> ​= ​0.89, <em>SE</em> ​± ​0.054. Similar models were also developed to predict leg, arm, spine, and pelvis BMD (<em>R</em><sup><em>2</em></sup> ​= ​0.796–0.864, <em>p</em> ​&lt; ​0.05). The equations developed here represent promising tools for identifying individuals with low BMD at risk of fracture who would benefit from further evaluation, especially in the resource or time restricted setting.</p></div>\",\"PeriodicalId\":33620,\"journal\":{\"name\":\"Sports Medicine and Health Science\",\"volume\":\"5 4\",\"pages\":\"Pages 308-313\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266633762300063X/pdfft?md5=026f0f312ea15c956c0350e8f5526b50&pid=1-s2.0-S266633762300063X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Medicine and Health Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266633762300063X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine and Health Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266633762300063X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

骨折的治疗费用高昂,而且会大大增加发病率。虽然双能 X 射线吸收测定法(DEXA)可用于筛查骨质密度(BMD)低的高危人群,但并非所有地区都能使用这种方法。我们试图开发一种易于使用、价格低廉、高通量的骨密度预测工具,以识别有骨折风险的人群,并对其进行进一步评估。我们收集了 492 名志愿者(♂275,♀217;[44 ± 20]岁;体重指数 (BMI) = [27.6 ± 6.0] kg/m2)的人体测量和人口统计学数据,以及全身骨矿含量(BMC,千克)和脊柱、骨盆、手臂、腿部和全身的 BMD 测量数据。采用逐步去除的多元线性回归方法,建立了一个先预测 BMC,再预测 BMC 的两步预测模型。模型的选择取决于最高的调整 R2、最低的估计误差和最低的方差膨胀水平(α = 0.05)。在以下两步模型中,身高(HTcm)、年龄(岁)、性别m=1、f=0、体脂率(%fat)、无脂肪质量(FFMkg)、脂肪质量(FMkg)、腿长(LLcm)、肩宽(SHWDTHcm)、躯干长(TRNKLcm)和骨盆宽(PWDTHcm)被认为是显著的预测因素(p < 0.05)。第一步:BMC(kg)=(0.006 3 × HT)+(-0.002 4 × AGE)+(0.171 2 × SEXm=1, f=0)+(0.031 4 × FFM)+(0.001 × FM)+(0.008 9 × SHWDTH)+(-0.014 5 × TRNKL)+(-0.027 8 × PWDTH)- 0.507 3;R2 = 0.819,SE ± 0.301。步骤 2:全身 BMD(g/cm2)=(-0.002 8 × HT)+(-0.043 7 × SEXm=1,f=0)+(0.000 8 × %FAT)+(0.297 0 × BMC)+(-0.002 3 × LL)+(0.002 3 × SHWDTH)+(-0.002 5 × TRNKL)+(-0.011 3 × PWDTH)+1.379;R2 = 0.89,SE ± 0.054。类似的模型还可用于预测腿部、手臂、脊柱和骨盆的 BMD(R2 = 0.796-0.864, p < 0.05)。此处开发的方程是一种很有前途的工具,可用于识别有骨折风险的低 BMD 患者,这些患者将受益于进一步的评估,尤其是在资源或时间有限的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel non-invasive method for predicting bone mineral density and fracture risk using demographic and anthropometric measures

Fractures are costly to treat and can significantly increase morbidity. Although dual-energy x-ray absorptiometry (DEXA) is used to screen at risk people with low bone mineral density (BMD), not all areas have access to one. We sought to create a readily accessible, inexpensive, high-throughput prediction tool for BMD that may identify people at risk of fracture for further evaluation. Anthropometric and demographic data were collected from 492 volunteers (♂275, ♀217; [44 ​± ​20] years; Body Mass Index (BMI) = [27.6 ​± ​6.0] kg/m2) in addition to total body bone mineral content (BMC, kg) and BMD measurements of the spine, pelvis, arms, legs and total body. Multiple-linear-regression with step-wise removal was used to develop a two-step prediction model for BMC followed by BMC. Model selection was determined by the highest adjusted R2, lowest error of estimate, and lowest level of variance inflation (α ​= ​0.05). Height (HTcm), age (years), sexm=1, f=0, %body fat (%fat), fat free mass (FFMkg), fat mass (FMkg), leg length (LLcm), shoulder width (SHWDTHcm), trunk length (TRNKLcm), and pelvis width (PWDTHcm) were observed to be significant predictors in the following two-step model (p ​< ​0.05). Step1: BMC (kg) = (0.006 3 × HT) ​+ ​(−0.002 4 × AGE) ​+ ​(0.171 2 × SEXm=1, f=0) ​+ ​(0.031 4 × FFM) ​+ ​(0.001 × FM) ​+ ​(0.008 9 × SHWDTH) ​+ ​(−0.014 5 × TRNKL) ​+ ​(−0.027 8 × PWDTH) - 0.507 3; R2 ​= ​0.819, SE ​± ​0.301. Step2: Total body BMD (g/cm2) = (−0.002 8 × HT) ​+ ​(−0.043 7 × SEXm=1, f=0) ​+ ​(0.000 8 × %FAT) ​+ ​(0.297 0 × BMC) ​+ ​(−0.002 3 × LL) ​+ ​(0.002 3 × SHWDTH) ​+ ​(−0.002 5 × TRNKL) ​+ ​(−0.011 3 × PWDTH) ​+ ​1.379; R2 ​= ​0.89, SE ​± ​0.054. Similar models were also developed to predict leg, arm, spine, and pelvis BMD (R2 ​= ​0.796–0.864, p ​< ​0.05). The equations developed here represent promising tools for identifying individuals with low BMD at risk of fracture who would benefit from further evaluation, especially in the resource or time restricted setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sports Medicine and Health Science
Sports Medicine and Health Science Health Professions-Physical Therapy, Sports Therapy and Rehabilitation
CiteScore
5.50
自引率
0.00%
发文量
36
审稿时长
55 days
期刊最新文献
Impact of COVID-19 pandemic on cardiovascular health in sedentary and athletes: Consensus, uncertainties, and ways for mitigation The effects of prolonged sitting behavior on resting-state brain functional connectivity in college students post-COVID-19 rehabilitation: A study based on fNIRS technology Effects of COVID-19 on the cardiovascular system: A mendelian randomization study Relationship between infection, physical and mental health and exercise habits of some Chinese residents after recovery from COVID-19 Changes in physical activity and sleep following the COVID-19 pandemic on a university campus: Perception versus reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1