{"title":"带凸惩罚的m估计量的样本外误差估计","authors":"Pierre C Bellec","doi":"10.1093/imaiai/iaad031","DOIUrl":null,"url":null,"abstract":"Abstract A generic out-of-sample error estimate is proposed for $M$-estimators regularized with a convex penalty in high-dimensional linear regression where $(\\boldsymbol{X},\\boldsymbol{y})$ is observed and the dimension $p$ and sample size $n$ are of the same order. The out-of-sample error estimate enjoys a relative error of order $n^{-1/2}$ in a linear model with Gaussian covariates and independent noise, either non-asymptotically when $p/n\\le \\gamma $ or asymptotically in the high-dimensional asymptotic regime $p/n\\to \\gamma ^{\\prime}\\in (0,\\infty )$. General differentiable loss functions $\\rho $ are allowed provided that the derivative of the loss is 1-Lipschitz; this includes the least-squares loss as well as robust losses such as the Huber loss and its smoothed versions. The validity of the out-of-sample error estimate holds either under a strong convexity assumption, or for the L1-penalized Huber M-estimator and the Lasso under a sparsity assumption and a bound on the number of contaminated observations. For the square loss and in the absence of corruption in the response, the results additionally yield $n^{-1/2}$-consistent estimates of the noise variance and of the generalization error. This generalizes, to arbitrary convex penalty and arbitrary covariance, estimates that were previously known for the Lasso.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"17 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Out-of-sample error estimation for M-estimators with convex penalty\",\"authors\":\"Pierre C Bellec\",\"doi\":\"10.1093/imaiai/iaad031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A generic out-of-sample error estimate is proposed for $M$-estimators regularized with a convex penalty in high-dimensional linear regression where $(\\\\boldsymbol{X},\\\\boldsymbol{y})$ is observed and the dimension $p$ and sample size $n$ are of the same order. The out-of-sample error estimate enjoys a relative error of order $n^{-1/2}$ in a linear model with Gaussian covariates and independent noise, either non-asymptotically when $p/n\\\\le \\\\gamma $ or asymptotically in the high-dimensional asymptotic regime $p/n\\\\to \\\\gamma ^{\\\\prime}\\\\in (0,\\\\infty )$. General differentiable loss functions $\\\\rho $ are allowed provided that the derivative of the loss is 1-Lipschitz; this includes the least-squares loss as well as robust losses such as the Huber loss and its smoothed versions. The validity of the out-of-sample error estimate holds either under a strong convexity assumption, or for the L1-penalized Huber M-estimator and the Lasso under a sparsity assumption and a bound on the number of contaminated observations. For the square loss and in the absence of corruption in the response, the results additionally yield $n^{-1/2}$-consistent estimates of the noise variance and of the generalization error. This generalizes, to arbitrary convex penalty and arbitrary covariance, estimates that were previously known for the Lasso.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Out-of-sample error estimation for M-estimators with convex penalty
Abstract A generic out-of-sample error estimate is proposed for $M$-estimators regularized with a convex penalty in high-dimensional linear regression where $(\boldsymbol{X},\boldsymbol{y})$ is observed and the dimension $p$ and sample size $n$ are of the same order. The out-of-sample error estimate enjoys a relative error of order $n^{-1/2}$ in a linear model with Gaussian covariates and independent noise, either non-asymptotically when $p/n\le \gamma $ or asymptotically in the high-dimensional asymptotic regime $p/n\to \gamma ^{\prime}\in (0,\infty )$. General differentiable loss functions $\rho $ are allowed provided that the derivative of the loss is 1-Lipschitz; this includes the least-squares loss as well as robust losses such as the Huber loss and its smoothed versions. The validity of the out-of-sample error estimate holds either under a strong convexity assumption, or for the L1-penalized Huber M-estimator and the Lasso under a sparsity assumption and a bound on the number of contaminated observations. For the square loss and in the absence of corruption in the response, the results additionally yield $n^{-1/2}$-consistent estimates of the noise variance and of the generalization error. This generalizes, to arbitrary convex penalty and arbitrary covariance, estimates that were previously known for the Lasso.