Roberto Ulloa, Mykola Makhortykh, Aleksandra Urman, Juhi Kulshrestha
{"title":"新闻搜索中的新颖性:对2020年美国大选的纵向研究","authors":"Roberto Ulloa, Mykola Makhortykh, Aleksandra Urman, Juhi Kulshrestha","doi":"10.1177/08944393231195471","DOIUrl":null,"url":null,"abstract":"The 2020 US elections news coverage was extensive, with new pieces of information generated rapidly. This evolving scenario presented an opportunity to study the performance of search engines in a context in which they had to quickly process information as it was published. We analyze novelty, a measurement of new items that emerge in the top news search results, to compare the coverage and visibility of different topics. Using virtual agents that simulate human web browsing behavior to collect search engine result pages, we conduct a longitudinal study of news results of five search engines collected in short bursts (every 21 minutes) from two regions (Oregon, US and Frankfurt, Germany), starting on election day and lasting until one day after the announcement of Biden as the winner. We find more new items emerging for election related queries (“joe biden,” “donald trump,” and “us elections”) compared to topical (e.g., “coronavirus”) or stable (e.g., “holocaust”) queries. We demonstrate that our method captures sudden changes in highly covered news topics as well as multiple differences across search engines and regions over time. We highlight novelty imbalances between candidate queries which affect their visibility during electoral periods, and conclude that, when it comes to news, search engines are responsible for such imbalances, either due to their algorithms or the set of news sources that they rely on.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"34 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novelty in News Search: A Longitudinal Study of the 2020 US Elections\",\"authors\":\"Roberto Ulloa, Mykola Makhortykh, Aleksandra Urman, Juhi Kulshrestha\",\"doi\":\"10.1177/08944393231195471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2020 US elections news coverage was extensive, with new pieces of information generated rapidly. This evolving scenario presented an opportunity to study the performance of search engines in a context in which they had to quickly process information as it was published. We analyze novelty, a measurement of new items that emerge in the top news search results, to compare the coverage and visibility of different topics. Using virtual agents that simulate human web browsing behavior to collect search engine result pages, we conduct a longitudinal study of news results of five search engines collected in short bursts (every 21 minutes) from two regions (Oregon, US and Frankfurt, Germany), starting on election day and lasting until one day after the announcement of Biden as the winner. We find more new items emerging for election related queries (“joe biden,” “donald trump,” and “us elections”) compared to topical (e.g., “coronavirus”) or stable (e.g., “holocaust”) queries. We demonstrate that our method captures sudden changes in highly covered news topics as well as multiple differences across search engines and regions over time. We highlight novelty imbalances between candidate queries which affect their visibility during electoral periods, and conclude that, when it comes to news, search engines are responsible for such imbalances, either due to their algorithms or the set of news sources that they rely on.\",\"PeriodicalId\":49509,\"journal\":{\"name\":\"Social Science Computer Review\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Computer Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/08944393231195471\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/08944393231195471","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Novelty in News Search: A Longitudinal Study of the 2020 US Elections
The 2020 US elections news coverage was extensive, with new pieces of information generated rapidly. This evolving scenario presented an opportunity to study the performance of search engines in a context in which they had to quickly process information as it was published. We analyze novelty, a measurement of new items that emerge in the top news search results, to compare the coverage and visibility of different topics. Using virtual agents that simulate human web browsing behavior to collect search engine result pages, we conduct a longitudinal study of news results of five search engines collected in short bursts (every 21 minutes) from two regions (Oregon, US and Frankfurt, Germany), starting on election day and lasting until one day after the announcement of Biden as the winner. We find more new items emerging for election related queries (“joe biden,” “donald trump,” and “us elections”) compared to topical (e.g., “coronavirus”) or stable (e.g., “holocaust”) queries. We demonstrate that our method captures sudden changes in highly covered news topics as well as multiple differences across search engines and regions over time. We highlight novelty imbalances between candidate queries which affect their visibility during electoral periods, and conclude that, when it comes to news, search engines are responsible for such imbalances, either due to their algorithms or the set of news sources that they rely on.
期刊介绍:
Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.