{"title":"基于最大序数原理和“三体问题”的显式解的自组织过程的生成及其相关描述","authors":"Corrado Giannantoni","doi":"10.4236/jamp.2023.1110206","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC).","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generativity of Self-Organizing Processes and Their Correlative Description in Terms of a Formal Language of Meta-Ordinal Generative Nature, in the Light of the Maximum Ordinality Principle and the Explicit Solution to the “Three-Body Problem”\",\"authors\":\"Corrado Giannantoni\",\"doi\":\"10.4236/jamp.2023.1110206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC).\",\"PeriodicalId\":15035,\"journal\":{\"name\":\"Journal of Applied Mathematics and Physics\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.1110206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.1110206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generativity of Self-Organizing Processes and Their Correlative Description in Terms of a Formal Language of Meta-Ordinal Generative Nature, in the Light of the Maximum Ordinality Principle and the Explicit Solution to the “Three-Body Problem”
The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC).