Gongxun Lu, Shuai Li, Ke Yue, Huadong Yuan, Jianmin Luo, Yujing Liu, Yao Wang, Xinyong Tao, Jianwei Nai
{"title":"稳定锂金属阳极纳米球组装保护层的电解构建","authors":"Gongxun Lu, Shuai Li, Ke Yue, Huadong Yuan, Jianmin Luo, Yujing Liu, Yao Wang, Xinyong Tao, Jianwei Nai","doi":"10.1002/bte2.20230044","DOIUrl":null,"url":null,"abstract":"<p>The uncontrolled dendrite growth and electrolyte consumption in lithium metal batteries result from a heterogeneous and unstable solid electrolyte interphase (SEI). Here, a high-voltage forced electrolysis strategy is proposed to stabilize the lithium metal via electrodepositing a spherical protective layer. This peculiar SEI is composed of a nanosized Li sphere that is encased with adjustable composition, as proved by cryo-transmission electron microscopy and multiple surface-sensitive spectroscopies. Such a three-dimensional nanosphere-assembled protective layer has homogeneous components, mechanical strength, and rapid Li-ion conductivity, enabling it to alleviate the volume expansion and prevent dendrite growth during Li deposition. The symmetric cell can be stably operated for ultralong-term cycling time of 2000 and 800 h even at high current densities of 1 and 10 mA cm<sup>−2</sup>, respectively. Using this interface permits stable cycling of full cells paired with LiFePO<sub>4</sub> and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathodes with low negative/positive capacity ratio, high current density, and limited Li excess. This tactic also fosters a novel insight into interface design in the battery community and encourages the practical implementation of lithium metal batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230044","citationCount":"0","resultStr":"{\"title\":\"Electrolytic construction of nanosphere-assembled protective layer toward stable lithium metal anode\",\"authors\":\"Gongxun Lu, Shuai Li, Ke Yue, Huadong Yuan, Jianmin Luo, Yujing Liu, Yao Wang, Xinyong Tao, Jianwei Nai\",\"doi\":\"10.1002/bte2.20230044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The uncontrolled dendrite growth and electrolyte consumption in lithium metal batteries result from a heterogeneous and unstable solid electrolyte interphase (SEI). Here, a high-voltage forced electrolysis strategy is proposed to stabilize the lithium metal via electrodepositing a spherical protective layer. This peculiar SEI is composed of a nanosized Li sphere that is encased with adjustable composition, as proved by cryo-transmission electron microscopy and multiple surface-sensitive spectroscopies. Such a three-dimensional nanosphere-assembled protective layer has homogeneous components, mechanical strength, and rapid Li-ion conductivity, enabling it to alleviate the volume expansion and prevent dendrite growth during Li deposition. The symmetric cell can be stably operated for ultralong-term cycling time of 2000 and 800 h even at high current densities of 1 and 10 mA cm<sup>−2</sup>, respectively. Using this interface permits stable cycling of full cells paired with LiFePO<sub>4</sub> and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathodes with low negative/positive capacity ratio, high current density, and limited Li excess. This tactic also fosters a novel insight into interface design in the battery community and encourages the practical implementation of lithium metal batteries.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"2 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
锂金属电池中不受控制的枝晶生长和电解质消耗是由不均匀和不稳定的固体电解质界面(SEI)引起的。本文提出了一种高压强制电解策略,通过电沉积球形保护层来稳定锂金属。这种特殊的SEI是由一个纳米级的锂球组成的,包裹着可调节的成分,正如低温透射电子显微镜和多种表面敏感光谱所证明的那样。这种三维纳米球组装的保护层具有均匀的成分、机械强度和快速的锂离子导电性,使其能够缓解锂沉积过程中的体积膨胀并防止枝晶生长。即使在1 mA cm−2和10 mA cm−2的高电流密度下,对称电池也可以稳定地运行2000和800 h的超长循环时间。使用该接口,可以使与lifepo4和LiNi 0.8 Co 0.1 Mn 0.1 O 2阴极配对的全电池稳定循环,具有低负/正容量比,高电流密度和有限的锂过量。这种策略也在电池界培养了对界面设计的新见解,并鼓励了锂金属电池的实际应用。
Electrolytic construction of nanosphere-assembled protective layer toward stable lithium metal anode
The uncontrolled dendrite growth and electrolyte consumption in lithium metal batteries result from a heterogeneous and unstable solid electrolyte interphase (SEI). Here, a high-voltage forced electrolysis strategy is proposed to stabilize the lithium metal via electrodepositing a spherical protective layer. This peculiar SEI is composed of a nanosized Li sphere that is encased with adjustable composition, as proved by cryo-transmission electron microscopy and multiple surface-sensitive spectroscopies. Such a three-dimensional nanosphere-assembled protective layer has homogeneous components, mechanical strength, and rapid Li-ion conductivity, enabling it to alleviate the volume expansion and prevent dendrite growth during Li deposition. The symmetric cell can be stably operated for ultralong-term cycling time of 2000 and 800 h even at high current densities of 1 and 10 mA cm−2, respectively. Using this interface permits stable cycling of full cells paired with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 cathodes with low negative/positive capacity ratio, high current density, and limited Li excess. This tactic also fosters a novel insight into interface design in the battery community and encourages the practical implementation of lithium metal batteries.