稳定锂金属阳极纳米球组装保护层的电解构建

Gongxun Lu, Shuai Li, Ke Yue, Huadong Yuan, Jianmin Luo, Yujing Liu, Yao Wang, Xinyong Tao, Jianwei Nai
{"title":"稳定锂金属阳极纳米球组装保护层的电解构建","authors":"Gongxun Lu,&nbsp;Shuai Li,&nbsp;Ke Yue,&nbsp;Huadong Yuan,&nbsp;Jianmin Luo,&nbsp;Yujing Liu,&nbsp;Yao Wang,&nbsp;Xinyong Tao,&nbsp;Jianwei Nai","doi":"10.1002/bte2.20230044","DOIUrl":null,"url":null,"abstract":"<p>The uncontrolled dendrite growth and electrolyte consumption in lithium metal batteries result from a heterogeneous and unstable solid electrolyte interphase (SEI). Here, a high-voltage forced electrolysis strategy is proposed to stabilize the lithium metal via electrodepositing a spherical protective layer. This peculiar SEI is composed of a nanosized Li sphere that is encased with adjustable composition, as proved by cryo-transmission electron microscopy and multiple surface-sensitive spectroscopies. Such a three-dimensional nanosphere-assembled protective layer has homogeneous components, mechanical strength, and rapid Li-ion conductivity, enabling it to alleviate the volume expansion and prevent dendrite growth during Li deposition. The symmetric cell can be stably operated for ultralong-term cycling time of 2000 and 800 h even at high current densities of 1 and 10 mA cm<sup>−2</sup>, respectively. Using this interface permits stable cycling of full cells paired with LiFePO<sub>4</sub> and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathodes with low negative/positive capacity ratio, high current density, and limited Li excess. This tactic also fosters a novel insight into interface design in the battery community and encourages the practical implementation of lithium metal batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230044","citationCount":"0","resultStr":"{\"title\":\"Electrolytic construction of nanosphere-assembled protective layer toward stable lithium metal anode\",\"authors\":\"Gongxun Lu,&nbsp;Shuai Li,&nbsp;Ke Yue,&nbsp;Huadong Yuan,&nbsp;Jianmin Luo,&nbsp;Yujing Liu,&nbsp;Yao Wang,&nbsp;Xinyong Tao,&nbsp;Jianwei Nai\",\"doi\":\"10.1002/bte2.20230044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The uncontrolled dendrite growth and electrolyte consumption in lithium metal batteries result from a heterogeneous and unstable solid electrolyte interphase (SEI). Here, a high-voltage forced electrolysis strategy is proposed to stabilize the lithium metal via electrodepositing a spherical protective layer. This peculiar SEI is composed of a nanosized Li sphere that is encased with adjustable composition, as proved by cryo-transmission electron microscopy and multiple surface-sensitive spectroscopies. Such a three-dimensional nanosphere-assembled protective layer has homogeneous components, mechanical strength, and rapid Li-ion conductivity, enabling it to alleviate the volume expansion and prevent dendrite growth during Li deposition. The symmetric cell can be stably operated for ultralong-term cycling time of 2000 and 800 h even at high current densities of 1 and 10 mA cm<sup>−2</sup>, respectively. Using this interface permits stable cycling of full cells paired with LiFePO<sub>4</sub> and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathodes with low negative/positive capacity ratio, high current density, and limited Li excess. This tactic also fosters a novel insight into interface design in the battery community and encourages the practical implementation of lithium metal batteries.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"2 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池中不受控制的枝晶生长和电解质消耗是由不均匀和不稳定的固体电解质界面(SEI)引起的。本文提出了一种高压强制电解策略,通过电沉积球形保护层来稳定锂金属。这种特殊的SEI是由一个纳米级的锂球组成的,包裹着可调节的成分,正如低温透射电子显微镜和多种表面敏感光谱所证明的那样。这种三维纳米球组装的保护层具有均匀的成分、机械强度和快速的锂离子导电性,使其能够缓解锂沉积过程中的体积膨胀并防止枝晶生长。即使在1 mA cm−2和10 mA cm−2的高电流密度下,对称电池也可以稳定地运行2000和800 h的超长循环时间。使用该接口,可以使与lifepo4和LiNi 0.8 Co 0.1 Mn 0.1 O 2阴极配对的全电池稳定循环,具有低负/正容量比,高电流密度和有限的锂过量。这种策略也在电池界培养了对界面设计的新见解,并鼓励了锂金属电池的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrolytic construction of nanosphere-assembled protective layer toward stable lithium metal anode

The uncontrolled dendrite growth and electrolyte consumption in lithium metal batteries result from a heterogeneous and unstable solid electrolyte interphase (SEI). Here, a high-voltage forced electrolysis strategy is proposed to stabilize the lithium metal via electrodepositing a spherical protective layer. This peculiar SEI is composed of a nanosized Li sphere that is encased with adjustable composition, as proved by cryo-transmission electron microscopy and multiple surface-sensitive spectroscopies. Such a three-dimensional nanosphere-assembled protective layer has homogeneous components, mechanical strength, and rapid Li-ion conductivity, enabling it to alleviate the volume expansion and prevent dendrite growth during Li deposition. The symmetric cell can be stably operated for ultralong-term cycling time of 2000 and 800 h even at high current densities of 1 and 10 mA cm−2, respectively. Using this interface permits stable cycling of full cells paired with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 cathodes with low negative/positive capacity ratio, high current density, and limited Li excess. This tactic also fosters a novel insight into interface design in the battery community and encourages the practical implementation of lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 3, Issue 6, November 2024 Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors Manipulation in the In Situ Growth Design Parameters of Aqueous Zinc-Based Electrodes for Batteries: The Fundamentals and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1