大气中硅的皮秒与飞秒激光烧蚀

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Laser Applications Pub Date : 2023-10-24 DOI:10.2351/7.0001206
Jason M. Gross, Seyedeh Reyhaneh Shavandi, Teodora Zagorac, Michael J. Pasterski, Luke Hanley
{"title":"大气中硅的皮秒与飞秒激光烧蚀","authors":"Jason M. Gross, Seyedeh Reyhaneh Shavandi, Teodora Zagorac, Michael J. Pasterski, Luke Hanley","doi":"10.2351/7.0001206","DOIUrl":null,"url":null,"abstract":"Laser ablation (LA) using nanosecond (ns) or femtosecond (fs) pulse widths is well-established for the volatilization of a liquid or solid for applications ranging from micromachining to sampling for compositional analysis. Far less work has examined laser ablation in the intermediate picosecond regime (ps-LA), which corresponds to the approximate timescale for the transfer of energy from laser-excited electrons to the lattice. 213 and 355 nm ps-LA of silicon (Si) with Gaussian beam profiles is compared here to 800 nm fs-LA with both Gaussian and flat-top beam profiles, all performed at or above the ablation threshold with 20 000–67 000 laser pulses. The morphology and composition of the ablation spots are examined using scanning electron microscopy and energy dispersive x-ray spectroscopy (EDS), respectively. 213 nm ps-LA yields more visible nanostructures compared to those ablated by 355 nm ps-LA, but both form central craters with surrounding nanostructures due to resolidified material. The flat-top fs beam creates protruding nanostructures isolated near the rim of the crater and an inside-out umbrella-like structure at the center. The Gaussian fs-LA region displays a relatively smooth conical crater, albeit with some nanostructure at the rim of the crater. EDS finds that these nanostructures are at least partly composed of silicon oxide or suboxides. The invisibility of these nanostructures to optical profilometry is consistent with black-silicon. The ablation crater results from optical profilometry for 213 nm ps-LA are close to those for 800 nm flat-top fs-LA, and both are consistent with cylindrical craters.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"7 10","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Picosecond versus femtosecond-laser ablation of silicon in atmosphere\",\"authors\":\"Jason M. Gross, Seyedeh Reyhaneh Shavandi, Teodora Zagorac, Michael J. Pasterski, Luke Hanley\",\"doi\":\"10.2351/7.0001206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser ablation (LA) using nanosecond (ns) or femtosecond (fs) pulse widths is well-established for the volatilization of a liquid or solid for applications ranging from micromachining to sampling for compositional analysis. Far less work has examined laser ablation in the intermediate picosecond regime (ps-LA), which corresponds to the approximate timescale for the transfer of energy from laser-excited electrons to the lattice. 213 and 355 nm ps-LA of silicon (Si) with Gaussian beam profiles is compared here to 800 nm fs-LA with both Gaussian and flat-top beam profiles, all performed at or above the ablation threshold with 20 000–67 000 laser pulses. The morphology and composition of the ablation spots are examined using scanning electron microscopy and energy dispersive x-ray spectroscopy (EDS), respectively. 213 nm ps-LA yields more visible nanostructures compared to those ablated by 355 nm ps-LA, but both form central craters with surrounding nanostructures due to resolidified material. The flat-top fs beam creates protruding nanostructures isolated near the rim of the crater and an inside-out umbrella-like structure at the center. The Gaussian fs-LA region displays a relatively smooth conical crater, albeit with some nanostructure at the rim of the crater. EDS finds that these nanostructures are at least partly composed of silicon oxide or suboxides. The invisibility of these nanostructures to optical profilometry is consistent with black-silicon. The ablation crater results from optical profilometry for 213 nm ps-LA are close to those for 800 nm flat-top fs-LA, and both are consistent with cylindrical craters.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":\"7 10\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001206\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用纳秒(ns)或飞秒(fs)脉冲宽度的激光烧蚀(LA)在液体或固体的挥发中已经得到了很好的应用,从微加工到成分分析的采样。在中间皮秒(ps-LA)状态下研究激光烧蚀的工作要少得多,这与激光激发电子向晶格转移能量的近似时间尺度相对应。本文将213 nm和355nm高斯光束谱的硅(Si)的ps-LA与800 nm高斯和平顶光束谱的fs-LA进行了比较,均在20,000 - 67,000激光脉冲的烧蚀阈值下或以上进行。利用扫描电子显微镜和能谱仪对烧蚀点的形貌和组成进行了分析。与355 nm ps-LA相比,213 nm ps-LA产生了更多可见的纳米结构,但由于材料的再固化,两者都形成了与周围纳米结构的中心陨石坑。平顶的fs光束在陨石坑边缘附近形成了突出的纳米结构,在陨石坑中心形成了一个由内而外的伞状结构。高斯fs-LA区显示出一个相对光滑的圆锥形陨石坑,尽管在陨石坑的边缘有一些纳米结构。EDS发现这些纳米结构至少部分由氧化硅或亚氧化物组成。这些纳米结构对光学轮廓的不可见性与黑硅一致。213 nm ps-LA的光学轮廓测量结果与800 nm平顶fs-LA的结果接近,两者都与圆柱形陨石坑一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Picosecond versus femtosecond-laser ablation of silicon in atmosphere
Laser ablation (LA) using nanosecond (ns) or femtosecond (fs) pulse widths is well-established for the volatilization of a liquid or solid for applications ranging from micromachining to sampling for compositional analysis. Far less work has examined laser ablation in the intermediate picosecond regime (ps-LA), which corresponds to the approximate timescale for the transfer of energy from laser-excited electrons to the lattice. 213 and 355 nm ps-LA of silicon (Si) with Gaussian beam profiles is compared here to 800 nm fs-LA with both Gaussian and flat-top beam profiles, all performed at or above the ablation threshold with 20 000–67 000 laser pulses. The morphology and composition of the ablation spots are examined using scanning electron microscopy and energy dispersive x-ray spectroscopy (EDS), respectively. 213 nm ps-LA yields more visible nanostructures compared to those ablated by 355 nm ps-LA, but both form central craters with surrounding nanostructures due to resolidified material. The flat-top fs beam creates protruding nanostructures isolated near the rim of the crater and an inside-out umbrella-like structure at the center. The Gaussian fs-LA region displays a relatively smooth conical crater, albeit with some nanostructure at the rim of the crater. EDS finds that these nanostructures are at least partly composed of silicon oxide or suboxides. The invisibility of these nanostructures to optical profilometry is consistent with black-silicon. The ablation crater results from optical profilometry for 213 nm ps-LA are close to those for 800 nm flat-top fs-LA, and both are consistent with cylindrical craters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
期刊最新文献
Experimental evaluation of a WC–Co alloy layer formation process by multibeam-type laser metal deposition with blue diode lasers Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching Investigating the influence of thermal behavior on microstructure during solidification in laser powder bed fusion of AlSi10Mg alloys: A phase-field analysis High-power fiber-coupled diode laser welding of 10-mm thick Inconel 617 superalloy Influence of temperature and beam size on weld track shape in laser powder bed fusion of pure copper using near-infrared laser system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1