{"title":"利用卷积神经网络进行多重曝光图像融合","authors":"Harun AKBULUT>, Veysel ASLANTAŞ>","doi":"10.17341/gazimmfd.1067400","DOIUrl":null,"url":null,"abstract":"Aynı sahneye ait iki ya da daha fazla düşük dinamik alana (LDR) sahip görüntülerden yüksek dinamik alana (HDR) sahip tek bir görüntü elde etme yöntemlerine çoklu-pozlamalı görüntü birleştirme (MEF) denir. Bu çalışmada MEF için derin öğrenme (DL) modellerinden evrişimli sinir ağı (CNN) kullanan yeni bir yöntem önerilmiştir. Önerilen yöntemde ilk adımda CNN modeli kullanılarak kaynak görüntülerden birleştirme haritası (fmap) elde edilmiştir. Birleştirilmiş görüntülerde testere-dişi etkisini ortadan kaldırmak için fmap üzerinde ağırlıklandırma işlemi gerçekleştirilmiştir. Daha sonra ağırlıklandırılmış fmap kullanılarak her tarafı iyi pozlanmış birleştirilmiş görüntüler oluşturulmuştur. Önerilen yöntem literatürde yaygın olarak kullanılan MEF veri setlerine uygulanmış ve elde edilen birleştirilmiş görüntüler kalite metrikleri kullanılarak değerlendirilmiştir. Önerilen yöntem ve diğer iyi bilinen görüntü birleştirme yöntemleri, görsel ve niceliksel değerlendirme açısından karşılaştırılmıştır. Elde edilen sonuçlar, geliştirilen tekniğin uygulanabilirliğini göstermektedir.","PeriodicalId":51103,"journal":{"name":"Journal of the Faculty of Engineering and Architecture of Gazi University","volume":"13 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evrişimli sinir ağı kullanarak çoklu-pozlamalı görüntü birleştirme\",\"authors\":\"Harun AKBULUT>, Veysel ASLANTAŞ>\",\"doi\":\"10.17341/gazimmfd.1067400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aynı sahneye ait iki ya da daha fazla düşük dinamik alana (LDR) sahip görüntülerden yüksek dinamik alana (HDR) sahip tek bir görüntü elde etme yöntemlerine çoklu-pozlamalı görüntü birleştirme (MEF) denir. Bu çalışmada MEF için derin öğrenme (DL) modellerinden evrişimli sinir ağı (CNN) kullanan yeni bir yöntem önerilmiştir. Önerilen yöntemde ilk adımda CNN modeli kullanılarak kaynak görüntülerden birleştirme haritası (fmap) elde edilmiştir. Birleştirilmiş görüntülerde testere-dişi etkisini ortadan kaldırmak için fmap üzerinde ağırlıklandırma işlemi gerçekleştirilmiştir. Daha sonra ağırlıklandırılmış fmap kullanılarak her tarafı iyi pozlanmış birleştirilmiş görüntüler oluşturulmuştur. Önerilen yöntem literatürde yaygın olarak kullanılan MEF veri setlerine uygulanmış ve elde edilen birleştirilmiş görüntüler kalite metrikleri kullanılarak değerlendirilmiştir. Önerilen yöntem ve diğer iyi bilinen görüntü birleştirme yöntemleri, görsel ve niceliksel değerlendirme açısından karşılaştırılmıştır. Elde edilen sonuçlar, geliştirilen tekniğin uygulanabilirliğini göstermektedir.\",\"PeriodicalId\":51103,\"journal\":{\"name\":\"Journal of the Faculty of Engineering and Architecture of Gazi University\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Faculty of Engineering and Architecture of Gazi University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17341/gazimmfd.1067400\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Faculty of Engineering and Architecture of Gazi University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17341/gazimmfd.1067400","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Evrişimli sinir ağı kullanarak çoklu-pozlamalı görüntü birleştirme
Aynı sahneye ait iki ya da daha fazla düşük dinamik alana (LDR) sahip görüntülerden yüksek dinamik alana (HDR) sahip tek bir görüntü elde etme yöntemlerine çoklu-pozlamalı görüntü birleştirme (MEF) denir. Bu çalışmada MEF için derin öğrenme (DL) modellerinden evrişimli sinir ağı (CNN) kullanan yeni bir yöntem önerilmiştir. Önerilen yöntemde ilk adımda CNN modeli kullanılarak kaynak görüntülerden birleştirme haritası (fmap) elde edilmiştir. Birleştirilmiş görüntülerde testere-dişi etkisini ortadan kaldırmak için fmap üzerinde ağırlıklandırma işlemi gerçekleştirilmiştir. Daha sonra ağırlıklandırılmış fmap kullanılarak her tarafı iyi pozlanmış birleştirilmiş görüntüler oluşturulmuştur. Önerilen yöntem literatürde yaygın olarak kullanılan MEF veri setlerine uygulanmış ve elde edilen birleştirilmiş görüntüler kalite metrikleri kullanılarak değerlendirilmiştir. Önerilen yöntem ve diğer iyi bilinen görüntü birleştirme yöntemleri, görsel ve niceliksel değerlendirme açısından karşılaştırılmıştır. Elde edilen sonuçlar, geliştirilen tekniğin uygulanabilirliğini göstermektedir.
期刊介绍:
Gazi University Journal of the Faculty of Engineering and Architecture; Engineering qualifications described below and in the field of architecture research papers and invited articles by scanning is considered to be Turkish.