Ao Guo, Nan Jiang, Yan Xu, Tianhe Xu, Yuhao Wu, Song Li, Zhaorui Gao
{"title":"2022年9月5日中国泸定6.8级地震的PWV和陆-气观测同震特征分析","authors":"Ao Guo, Nan Jiang, Yan Xu, Tianhe Xu, Yuhao Wu, Song Li, Zhaorui Gao","doi":"10.1080/19475705.2023.2279494","DOIUrl":null,"url":null,"abstract":"The Sichuan Luding earthquake that struck on September 5, 2022 is one of the strongest earthquakes in China in recent years. The analysis of precipitable water vapor (PWV) retrieved from the ground-based global navigation satellite system (GNSS), surface pressure (SP), surface latent heat flux (SLHF), and land surface temperature (LST) from the reanalysis dataset was carried out in the epicenter and the nearby areas. The results show that PWV decreases distinctly and reaches the trough at the outburst with significant minimums of 43.21 mm and 37.84 mm over the nearest SCSM and SCTQ station from the epicenter. SLHF also has the same trend, and SP increased. Additionally, the LST analysis from two-temporal series was conducted to reveal that the Luding event accompanies by a low-temperature anomaly. Based on the background field established from the same period of the last ten years, LST at the epicenter on the day of occurrence was 5.68 °C lower than in previous years. Furthermore, the strongest low-temperature anomalies were observed from September 4 to 6, with the anomaly index of −1.95, −1.71, and −1.60, respectively. It is plain that the parameters from the land and atmosphere perform the anomalies at the minimum during the Luding earthquake.","PeriodicalId":51283,"journal":{"name":"Geomatics Natural Hazards & Risk","volume":" 7","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-seismic characterization analysis in PWV and land-atmospheric observations associated with Luding Ms 6.8 earthquake occurrence in China on September 5, 2022\",\"authors\":\"Ao Guo, Nan Jiang, Yan Xu, Tianhe Xu, Yuhao Wu, Song Li, Zhaorui Gao\",\"doi\":\"10.1080/19475705.2023.2279494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sichuan Luding earthquake that struck on September 5, 2022 is one of the strongest earthquakes in China in recent years. The analysis of precipitable water vapor (PWV) retrieved from the ground-based global navigation satellite system (GNSS), surface pressure (SP), surface latent heat flux (SLHF), and land surface temperature (LST) from the reanalysis dataset was carried out in the epicenter and the nearby areas. The results show that PWV decreases distinctly and reaches the trough at the outburst with significant minimums of 43.21 mm and 37.84 mm over the nearest SCSM and SCTQ station from the epicenter. SLHF also has the same trend, and SP increased. Additionally, the LST analysis from two-temporal series was conducted to reveal that the Luding event accompanies by a low-temperature anomaly. Based on the background field established from the same period of the last ten years, LST at the epicenter on the day of occurrence was 5.68 °C lower than in previous years. Furthermore, the strongest low-temperature anomalies were observed from September 4 to 6, with the anomaly index of −1.95, −1.71, and −1.60, respectively. It is plain that the parameters from the land and atmosphere perform the anomalies at the minimum during the Luding earthquake.\",\"PeriodicalId\":51283,\"journal\":{\"name\":\"Geomatics Natural Hazards & Risk\",\"volume\":\" 7\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics Natural Hazards & Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475705.2023.2279494\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics Natural Hazards & Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475705.2023.2279494","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Co-seismic characterization analysis in PWV and land-atmospheric observations associated with Luding Ms 6.8 earthquake occurrence in China on September 5, 2022
The Sichuan Luding earthquake that struck on September 5, 2022 is one of the strongest earthquakes in China in recent years. The analysis of precipitable water vapor (PWV) retrieved from the ground-based global navigation satellite system (GNSS), surface pressure (SP), surface latent heat flux (SLHF), and land surface temperature (LST) from the reanalysis dataset was carried out in the epicenter and the nearby areas. The results show that PWV decreases distinctly and reaches the trough at the outburst with significant minimums of 43.21 mm and 37.84 mm over the nearest SCSM and SCTQ station from the epicenter. SLHF also has the same trend, and SP increased. Additionally, the LST analysis from two-temporal series was conducted to reveal that the Luding event accompanies by a low-temperature anomaly. Based on the background field established from the same period of the last ten years, LST at the epicenter on the day of occurrence was 5.68 °C lower than in previous years. Furthermore, the strongest low-temperature anomalies were observed from September 4 to 6, with the anomaly index of −1.95, −1.71, and −1.60, respectively. It is plain that the parameters from the land and atmosphere perform the anomalies at the minimum during the Luding earthquake.
期刊介绍:
The aim of Geomatics, Natural Hazards and Risk is to address new concepts, approaches and case studies using geospatial and remote sensing techniques to study monitoring, mapping, risk mitigation, risk vulnerability and early warning of natural hazards.
Geomatics, Natural Hazards and Risk covers the following topics:
- Remote sensing techniques
- Natural hazards associated with land, ocean, atmosphere, land-ocean-atmosphere coupling and climate change
- Emerging problems related to multi-hazard risk assessment, multi-vulnerability risk assessment, risk quantification and the economic aspects of hazards.
- Results of findings on major natural hazards