{"title":"棕榈叶生物吸附材料在阿莫西林吸附中的应用","authors":"KHEIRA DJELLOULI DELLA, GHANIA HENINI, YAKHLEF LAIDANI","doi":"10.35812/cellulosechemtechnol.2023.57.79","DOIUrl":null,"url":null,"abstract":"In this study, fibers from the leaves of Brahea edulis palm (BEF) have been successfully used as a cheap, sustainable and eco-friendly biosorbent to remove the antibiotic Amoxicillin (AMX) from an aqueous solution using a batch process. This pharmaceutical product is present in domestic and industrial waste water. The characterization of BEF was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform infrared spectroscopy (FTIR). The results of XRD showed that BEF has a semicrystalline structure. SEM images revealed its morphology, surface structure and porous nature. FTIR results showed the presence of different functional groups (hydroxyls, carboxyls, amines, etc.). Several physicochemical parameters, such as porosity, ash content, moisture content, and isoelectronic point (pHpzc), were analyzed. The batch biosorption process of Amoxicillin by BEF was monitored with a UV-visible spectrophotometer at λ = 228 nm. Different operating parameters, such as contact time, biosorbent mass, pH, temperature and adsorbate concentration, were evaluated to find the maximum level of biosorption. The contact time of 90 minutes, 50 mg/L initial Amoxicillin concentration, 1.5 g biosorbent mass and 313 K temperature were found to be the optimum conditions that led to a percentage removal of AMX of 58% at pH 6.5. The maximum adsorption at high temperature indicates that this biosorption process is spontaneous and endothermic.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":"223 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BIOSORBENT MATERIAL FROM BRAHEA EDULIS PALM LEAVES – APPLICATION TO AMOXICILLIN ADSORPTION\",\"authors\":\"KHEIRA DJELLOULI DELLA, GHANIA HENINI, YAKHLEF LAIDANI\",\"doi\":\"10.35812/cellulosechemtechnol.2023.57.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, fibers from the leaves of Brahea edulis palm (BEF) have been successfully used as a cheap, sustainable and eco-friendly biosorbent to remove the antibiotic Amoxicillin (AMX) from an aqueous solution using a batch process. This pharmaceutical product is present in domestic and industrial waste water. The characterization of BEF was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform infrared spectroscopy (FTIR). The results of XRD showed that BEF has a semicrystalline structure. SEM images revealed its morphology, surface structure and porous nature. FTIR results showed the presence of different functional groups (hydroxyls, carboxyls, amines, etc.). Several physicochemical parameters, such as porosity, ash content, moisture content, and isoelectronic point (pHpzc), were analyzed. The batch biosorption process of Amoxicillin by BEF was monitored with a UV-visible spectrophotometer at λ = 228 nm. Different operating parameters, such as contact time, biosorbent mass, pH, temperature and adsorbate concentration, were evaluated to find the maximum level of biosorption. The contact time of 90 minutes, 50 mg/L initial Amoxicillin concentration, 1.5 g biosorbent mass and 313 K temperature were found to be the optimum conditions that led to a percentage removal of AMX of 58% at pH 6.5. The maximum adsorption at high temperature indicates that this biosorption process is spontaneous and endothermic.\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\"223 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2023.57.79\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.79","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
A BIOSORBENT MATERIAL FROM BRAHEA EDULIS PALM LEAVES – APPLICATION TO AMOXICILLIN ADSORPTION
In this study, fibers from the leaves of Brahea edulis palm (BEF) have been successfully used as a cheap, sustainable and eco-friendly biosorbent to remove the antibiotic Amoxicillin (AMX) from an aqueous solution using a batch process. This pharmaceutical product is present in domestic and industrial waste water. The characterization of BEF was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform infrared spectroscopy (FTIR). The results of XRD showed that BEF has a semicrystalline structure. SEM images revealed its morphology, surface structure and porous nature. FTIR results showed the presence of different functional groups (hydroxyls, carboxyls, amines, etc.). Several physicochemical parameters, such as porosity, ash content, moisture content, and isoelectronic point (pHpzc), were analyzed. The batch biosorption process of Amoxicillin by BEF was monitored with a UV-visible spectrophotometer at λ = 228 nm. Different operating parameters, such as contact time, biosorbent mass, pH, temperature and adsorbate concentration, were evaluated to find the maximum level of biosorption. The contact time of 90 minutes, 50 mg/L initial Amoxicillin concentration, 1.5 g biosorbent mass and 313 K temperature were found to be the optimum conditions that led to a percentage removal of AMX of 58% at pH 6.5. The maximum adsorption at high temperature indicates that this biosorption process is spontaneous and endothermic.
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials