皮肤癌检测:基于最优特征选择的改进深度信念网络

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS Multiagent and Grid Systems Pub Date : 2023-10-06 DOI:10.3233/mgs-230040
Jinu P. Sainudeen, Ceronmani Sharmila V, Parvathi R
{"title":"皮肤癌检测:基于最优特征选择的改进深度信念网络","authors":"Jinu P. Sainudeen, Ceronmani Sharmila V, Parvathi R","doi":"10.3233/mgs-230040","DOIUrl":null,"url":null,"abstract":"During the past few decades, melanoma has grown increasingly prevalent, and timely identification is crucial for lowering the mortality rates linked to this kind of skin cancer. Because of this, having access to an automated, trustworthy system that can identify the existence of melanoma may be very helpful in the field of medical diagnostics. Because of this, we have introduced a revolutionary, five-stage method for detecting skin cancer. The input images are processed utilizing histogram equalization as well as Gaussian filtering techniques during the initial pre-processing stage. An Improved Balanced Iterative Reducing as well as Clustering utilizing Hierarchies (I-BIRCH) is proposed to provide better image segmentation by efficiently allotting the labels to the pixels. From those segmented images, features such as Improved Local Vector Pattern, local ternary pattern, and Grey level co-occurrence matrix as well as the local gradient patterns will be retrieved in the third stage. We proposed an Arithmetic Operated Honey Badger Algorithm (AOHBA) to choose the best features from the retrieved characteristics, which lowered the computational expense as well as training time. In order to demonstrate the effectiveness of our proposed skin cancer detection strategy, the categorization is done using an improved Deep Belief Network (DBN) with respect to those chosen features. The performance assessment findings are then matched with existing methodologies.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin cancer detection: Improved deep belief network with optimal feature selection\",\"authors\":\"Jinu P. Sainudeen, Ceronmani Sharmila V, Parvathi R\",\"doi\":\"10.3233/mgs-230040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the past few decades, melanoma has grown increasingly prevalent, and timely identification is crucial for lowering the mortality rates linked to this kind of skin cancer. Because of this, having access to an automated, trustworthy system that can identify the existence of melanoma may be very helpful in the field of medical diagnostics. Because of this, we have introduced a revolutionary, five-stage method for detecting skin cancer. The input images are processed utilizing histogram equalization as well as Gaussian filtering techniques during the initial pre-processing stage. An Improved Balanced Iterative Reducing as well as Clustering utilizing Hierarchies (I-BIRCH) is proposed to provide better image segmentation by efficiently allotting the labels to the pixels. From those segmented images, features such as Improved Local Vector Pattern, local ternary pattern, and Grey level co-occurrence matrix as well as the local gradient patterns will be retrieved in the third stage. We proposed an Arithmetic Operated Honey Badger Algorithm (AOHBA) to choose the best features from the retrieved characteristics, which lowered the computational expense as well as training time. In order to demonstrate the effectiveness of our proposed skin cancer detection strategy, the categorization is done using an improved Deep Belief Network (DBN) with respect to those chosen features. The performance assessment findings are then matched with existing methodologies.\",\"PeriodicalId\":43659,\"journal\":{\"name\":\"Multiagent and Grid Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiagent and Grid Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mgs-230040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-230040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,黑色素瘤变得越来越普遍,及时识别对于降低与这种皮肤癌相关的死亡率至关重要。正因为如此,拥有一个能够识别黑色素瘤存在的自动化、可靠的系统,可能在医学诊断领域非常有帮助。正因为如此,我们引进了一种革命性的五阶段皮肤癌检测方法。在初始预处理阶段,使用直方图均衡化以及高斯滤波技术处理输入图像。提出了一种基于层次结构的改进平衡迭代约简聚类方法(I-BIRCH),通过有效地为像素分配标签来提供更好的图像分割。在第三阶段,从这些分割的图像中提取改进的局部向量模式、局部三元模式、灰度共生矩阵等特征以及局部梯度模式。提出了一种算法操作蜜獾算法(AOHBA),从检索到的特征中选择最优特征,降低了计算量和训练时间。为了证明我们提出的皮肤癌检测策略的有效性,使用改进的深度信念网络(DBN)对所选特征进行分类。然后将绩效评估结果与现有方法相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skin cancer detection: Improved deep belief network with optimal feature selection
During the past few decades, melanoma has grown increasingly prevalent, and timely identification is crucial for lowering the mortality rates linked to this kind of skin cancer. Because of this, having access to an automated, trustworthy system that can identify the existence of melanoma may be very helpful in the field of medical diagnostics. Because of this, we have introduced a revolutionary, five-stage method for detecting skin cancer. The input images are processed utilizing histogram equalization as well as Gaussian filtering techniques during the initial pre-processing stage. An Improved Balanced Iterative Reducing as well as Clustering utilizing Hierarchies (I-BIRCH) is proposed to provide better image segmentation by efficiently allotting the labels to the pixels. From those segmented images, features such as Improved Local Vector Pattern, local ternary pattern, and Grey level co-occurrence matrix as well as the local gradient patterns will be retrieved in the third stage. We proposed an Arithmetic Operated Honey Badger Algorithm (AOHBA) to choose the best features from the retrieved characteristics, which lowered the computational expense as well as training time. In order to demonstrate the effectiveness of our proposed skin cancer detection strategy, the categorization is done using an improved Deep Belief Network (DBN) with respect to those chosen features. The performance assessment findings are then matched with existing methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
期刊最新文献
Blockchain applications for Internet of Things (IoT): A review Sine tangent search algorithm enabled LeNet for cotton crop classification using satellite image Optimization enabled elastic scaling in cloud based on predicted load for resource management Geese jellyfish search optimization trained deep learning for multiclass plant disease detection using leaf images Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1