{"title":"基于物理信息混合建模方法的结构性能在线监测研究","authors":"Xiwang He, Kunpeng Li, Shuo Wang, Xiaonan Lai, Liangliang Yang, Ziyun Kan, Xueguan Song","doi":"10.1115/1.4063403","DOIUrl":null,"url":null,"abstract":"Abstract To optimize structures and monitor their health, it is essential to build an accurate dynamic analysis model. However, traditional modeling methods based solely on physical information or data-driven techniques may not suffice for many engineering applications. While physical models can accurately simulate complex equipment, they may also incur high computational time. On the other hand, data-driven models may improve computational efficiency but are subject to significant deviations due to the influence of training data. To address these challenges, the Physics-Informed Neural Network (PINN) has gained popularity for imposing physical constraints during the training process, leading to better generalization capabilities with fewer data samples. This paper proposes a physics-informed hybrid modeling (PIHM) approach that combines a reduced-order model, kernel functions, and dynamic equations to predict dynamic output with limited training data and physical information. The method integrates prior physics information into function approximation by incorporating the reduced dynamic equation into a surrogate modeling framework. The loss function considers inertial and damping effects, ensuring physical plausibility. Unlike traditional PINN applications, the proposed modeling method is more explainable, as the trained model can be expressed in function form with engineering interpretation. The approach is verified with a real-world engineering example (telehandler boom) under complex load conditions, demonstrating accuracy, efficiency, and physical plausibility. Overall, the proposed method offers promising capabilities in solving problems where high-fidelity simulation is challenging.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"13 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward an Online Monitoring of Structural Performance Based on Physics-Informed Hybrid Modeling Method\",\"authors\":\"Xiwang He, Kunpeng Li, Shuo Wang, Xiaonan Lai, Liangliang Yang, Ziyun Kan, Xueguan Song\",\"doi\":\"10.1115/1.4063403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To optimize structures and monitor their health, it is essential to build an accurate dynamic analysis model. However, traditional modeling methods based solely on physical information or data-driven techniques may not suffice for many engineering applications. While physical models can accurately simulate complex equipment, they may also incur high computational time. On the other hand, data-driven models may improve computational efficiency but are subject to significant deviations due to the influence of training data. To address these challenges, the Physics-Informed Neural Network (PINN) has gained popularity for imposing physical constraints during the training process, leading to better generalization capabilities with fewer data samples. This paper proposes a physics-informed hybrid modeling (PIHM) approach that combines a reduced-order model, kernel functions, and dynamic equations to predict dynamic output with limited training data and physical information. The method integrates prior physics information into function approximation by incorporating the reduced dynamic equation into a surrogate modeling framework. The loss function considers inertial and damping effects, ensuring physical plausibility. Unlike traditional PINN applications, the proposed modeling method is more explainable, as the trained model can be expressed in function form with engineering interpretation. The approach is verified with a real-world engineering example (telehandler boom) under complex load conditions, demonstrating accuracy, efficiency, and physical plausibility. Overall, the proposed method offers promising capabilities in solving problems where high-fidelity simulation is challenging.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063403\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063403","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Toward an Online Monitoring of Structural Performance Based on Physics-Informed Hybrid Modeling Method
Abstract To optimize structures and monitor their health, it is essential to build an accurate dynamic analysis model. However, traditional modeling methods based solely on physical information or data-driven techniques may not suffice for many engineering applications. While physical models can accurately simulate complex equipment, they may also incur high computational time. On the other hand, data-driven models may improve computational efficiency but are subject to significant deviations due to the influence of training data. To address these challenges, the Physics-Informed Neural Network (PINN) has gained popularity for imposing physical constraints during the training process, leading to better generalization capabilities with fewer data samples. This paper proposes a physics-informed hybrid modeling (PIHM) approach that combines a reduced-order model, kernel functions, and dynamic equations to predict dynamic output with limited training data and physical information. The method integrates prior physics information into function approximation by incorporating the reduced dynamic equation into a surrogate modeling framework. The loss function considers inertial and damping effects, ensuring physical plausibility. Unlike traditional PINN applications, the proposed modeling method is more explainable, as the trained model can be expressed in function form with engineering interpretation. The approach is verified with a real-world engineering example (telehandler boom) under complex load conditions, demonstrating accuracy, efficiency, and physical plausibility. Overall, the proposed method offers promising capabilities in solving problems where high-fidelity simulation is challenging.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.