低温和高温胁迫下白桦的RNA-Seq比较分析

IF 0.7 4区 农林科学 Q3 FORESTRY Cerne Pub Date : 2023-01-01 DOI:10.1590/01047760202329013147
Faujiah Nurhasanah Ritonga, Song Chen, Fitri Indriani, Runxian Song, Xiang Zhang, Xingguo Lan, Su Chen
{"title":"低温和高温胁迫下白桦的RNA-Seq比较分析","authors":"Faujiah Nurhasanah Ritonga, Song Chen, Fitri Indriani, Runxian Song, Xiang Zhang, Xingguo Lan, Su Chen","doi":"10.1590/01047760202329013147","DOIUrl":null,"url":null,"abstract":"Background: Betula platyphylla Sukaczev is one of important tree species due to its ecological and economic value. It is a cold-tolerant tree species which also faces heat stress during summer. In the current study, RNA-Seq profiling of two-month-old B. platyphylla seedlings were conducted utilizing the MGISEQ-2000 platform. Results: In total, 856,347,961 clean reads were obtained from 26 RNA-Seq libraries. Totally, 822,552,820 reads were successfully mapped to B. platyphylla reference genome. Further, a total of 360 and 264 DEGs were discovered under cold and heat exposure, respectively, while a total of 104 DEGs were identified under both cold and heat exposure. It was found that several pathways including response to cold, response to heat, response to temperature stimulus, response to stress, lipid metabolic, jamonic acid and ethylene, even developmental processes were significantly enriched in GO enrichment analysis of cold and heat stress in biological process term. Several transcription factors (TFs), including MYB66, CBF2, bHLH96and bZIP7 take a pivotal role in response to temperature stresses. Furthermore, heat shock proteins were identified under cold and heat stress, respectively, suggesting these genes participate in reducing cold and heat stress detrimental effect by interacting with TFs or other genes related to abiotic stresses, chlorophyll and photosynthesis, osmoprotectants, and phytohormone as well. Conclusion: This study not only underlying B. platyphylla’ s molecular mechanism in response to temperature stresses but also provides candidate genes involved in response to temperature stresses.","PeriodicalId":50705,"journal":{"name":"Cerne","volume":"12 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative RNA-Seq analysis of Betula platyphylla under low and high temperature stresses\",\"authors\":\"Faujiah Nurhasanah Ritonga, Song Chen, Fitri Indriani, Runxian Song, Xiang Zhang, Xingguo Lan, Su Chen\",\"doi\":\"10.1590/01047760202329013147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Betula platyphylla Sukaczev is one of important tree species due to its ecological and economic value. It is a cold-tolerant tree species which also faces heat stress during summer. In the current study, RNA-Seq profiling of two-month-old B. platyphylla seedlings were conducted utilizing the MGISEQ-2000 platform. Results: In total, 856,347,961 clean reads were obtained from 26 RNA-Seq libraries. Totally, 822,552,820 reads were successfully mapped to B. platyphylla reference genome. Further, a total of 360 and 264 DEGs were discovered under cold and heat exposure, respectively, while a total of 104 DEGs were identified under both cold and heat exposure. It was found that several pathways including response to cold, response to heat, response to temperature stimulus, response to stress, lipid metabolic, jamonic acid and ethylene, even developmental processes were significantly enriched in GO enrichment analysis of cold and heat stress in biological process term. Several transcription factors (TFs), including MYB66, CBF2, bHLH96and bZIP7 take a pivotal role in response to temperature stresses. Furthermore, heat shock proteins were identified under cold and heat stress, respectively, suggesting these genes participate in reducing cold and heat stress detrimental effect by interacting with TFs or other genes related to abiotic stresses, chlorophyll and photosynthesis, osmoprotectants, and phytohormone as well. Conclusion: This study not only underlying B. platyphylla’ s molecular mechanism in response to temperature stresses but also provides candidate genes involved in response to temperature stresses.\",\"PeriodicalId\":50705,\"journal\":{\"name\":\"Cerne\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerne\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/01047760202329013147\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerne","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/01047760202329013147","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative RNA-Seq analysis of Betula platyphylla under low and high temperature stresses
Background: Betula platyphylla Sukaczev is one of important tree species due to its ecological and economic value. It is a cold-tolerant tree species which also faces heat stress during summer. In the current study, RNA-Seq profiling of two-month-old B. platyphylla seedlings were conducted utilizing the MGISEQ-2000 platform. Results: In total, 856,347,961 clean reads were obtained from 26 RNA-Seq libraries. Totally, 822,552,820 reads were successfully mapped to B. platyphylla reference genome. Further, a total of 360 and 264 DEGs were discovered under cold and heat exposure, respectively, while a total of 104 DEGs were identified under both cold and heat exposure. It was found that several pathways including response to cold, response to heat, response to temperature stimulus, response to stress, lipid metabolic, jamonic acid and ethylene, even developmental processes were significantly enriched in GO enrichment analysis of cold and heat stress in biological process term. Several transcription factors (TFs), including MYB66, CBF2, bHLH96and bZIP7 take a pivotal role in response to temperature stresses. Furthermore, heat shock proteins were identified under cold and heat stress, respectively, suggesting these genes participate in reducing cold and heat stress detrimental effect by interacting with TFs or other genes related to abiotic stresses, chlorophyll and photosynthesis, osmoprotectants, and phytohormone as well. Conclusion: This study not only underlying B. platyphylla’ s molecular mechanism in response to temperature stresses but also provides candidate genes involved in response to temperature stresses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cerne
Cerne 农林科学-林学
CiteScore
1.60
自引率
0.00%
发文量
2
审稿时长
6-12 weeks
期刊介绍: Cerne is a journal edited by the Federal University of Lavras, Minas Gerais state, Brazil, which quarterly publishes original articles that represent relevant contribution to Forestry Science development (Forest ecology, Forest Management, Silviculture, Technology of Forest Products).
期刊最新文献
Dormancy breaking and biochemical processes associated with germination of Erythrina falcata Benth. seeds Strategies for optimizing the enrichment direct sowing: inoculation with Trichoderma spp. and use of a hydrogel Identification of 20 species from the Peruvian Amazon tropical forest by the wood macroscopic features Use of Acacia auriculiformis fast-growing tree species for the mitigation of climate change Burn severity evaluation in black pine forests with topographical factors using Sentinel-2 in Kastamonu, Turkiye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1