使用基于边际的权衡来设计空间探索和评估

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Mechanical Design Pub Date : 2023-11-01 DOI:10.1115/1.4063966
Khalil Al Handawi, Arindam Brahma, David C. Wynn, Michael Kokkolaras, Ola Isaksson
{"title":"使用基于边际的权衡来设计空间探索和评估","authors":"Khalil Al Handawi, Arindam Brahma, David C. Wynn, Michael Kokkolaras, Ola Isaksson","doi":"10.1115/1.4063966","DOIUrl":null,"url":null,"abstract":"Abstract Design space exploration and margin analysis can inform critical decisions early in engineering design, helping to handle the uncertainties of early design while ensuring design performance. In practice, the complexity of many products makes such decision-making challenging. This paper addresses the challenge with a new design framework that relies on the margin value method to evaluate sets of concepts that are combinatorially generated from an enhanced function-means tree. The basis for concept comparison is the margin value in each design alternative. The margin value method is expanded to address a broad class of design problems by using surrogate models and novel metrics for evaluating different conceptual alternatives. Visualization tools are introduced to support the evaluations. The efficacy of the framework is demonstrated using the design of a structural aero-engine component involving simulation models and uncertain load specifications. Overall, this paper shows how design concepts can be compared objectively and distilled to a set of alternatives that would retain their values throughout product development.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"254 6","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design space exploration and evaluation using margin-based trade-offs\",\"authors\":\"Khalil Al Handawi, Arindam Brahma, David C. Wynn, Michael Kokkolaras, Ola Isaksson\",\"doi\":\"10.1115/1.4063966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Design space exploration and margin analysis can inform critical decisions early in engineering design, helping to handle the uncertainties of early design while ensuring design performance. In practice, the complexity of many products makes such decision-making challenging. This paper addresses the challenge with a new design framework that relies on the margin value method to evaluate sets of concepts that are combinatorially generated from an enhanced function-means tree. The basis for concept comparison is the margin value in each design alternative. The margin value method is expanded to address a broad class of design problems by using surrogate models and novel metrics for evaluating different conceptual alternatives. Visualization tools are introduced to support the evaluations. The efficacy of the framework is demonstrated using the design of a structural aero-engine component involving simulation models and uncertain load specifications. Overall, this paper shows how design concepts can be compared objectively and distilled to a set of alternatives that would retain their values throughout product development.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"254 6\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063966\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063966","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

设计空间探索和余量分析可以为工程设计早期的关键决策提供信息,有助于在确保设计性能的同时处理早期设计的不确定性。在实践中,许多产品的复杂性使得这样的决策具有挑战性。本文通过一个新的设计框架解决了这一挑战,该框架依赖于边际值方法来评估由增强的函数均值树组合生成的概念集。概念比较的基础是每个设计方案的余量值。边际值方法通过使用替代模型和新指标来评估不同的概念替代方案,扩展到解决广泛的设计问题。引入可视化工具来支持评估。通过一个航空发动机结构部件的仿真模型和不确定载荷规格的设计,验证了该框架的有效性。总的来说,本文展示了如何客观地比较设计概念,并将其提炼成一组可在整个产品开发过程中保持其价值的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design space exploration and evaluation using margin-based trade-offs
Abstract Design space exploration and margin analysis can inform critical decisions early in engineering design, helping to handle the uncertainties of early design while ensuring design performance. In practice, the complexity of many products makes such decision-making challenging. This paper addresses the challenge with a new design framework that relies on the margin value method to evaluate sets of concepts that are combinatorially generated from an enhanced function-means tree. The basis for concept comparison is the margin value in each design alternative. The margin value method is expanded to address a broad class of design problems by using surrogate models and novel metrics for evaluating different conceptual alternatives. Visualization tools are introduced to support the evaluations. The efficacy of the framework is demonstrated using the design of a structural aero-engine component involving simulation models and uncertain load specifications. Overall, this paper shows how design concepts can be compared objectively and distilled to a set of alternatives that would retain their values throughout product development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanical Design
Journal of Mechanical Design 工程技术-工程:机械
CiteScore
8.00
自引率
18.20%
发文量
139
审稿时长
3.9 months
期刊介绍: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials. Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
期刊最新文献
Joint Special Issue on Advances in Design and Manufacturing for Sustainability Optimization of Tooth Profile Modification Amount and Manufacturing Tolerance Allocation for RV Reducer under Reliability Constraint Critical thinking assessment in engineering education: A Scopus-based literature review Accounting for Machine Learning Prediction Errors in Design Thinking Beyond the Default User: The Impact of Gender, Stereotypes, and Modality on Interpretation of User Needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1