Ruijie Tang, Qizhi Meng, Fugui Xie, Xin-Jun Liu, Jinsong Wang
{"title":"用于非接触式捕获任务的新型可展开多面体夹持器结构设计","authors":"Ruijie Tang, Qizhi Meng, Fugui Xie, Xin-Jun Liu, Jinsong Wang","doi":"10.1115/1.4063968","DOIUrl":null,"url":null,"abstract":"Abstract Deployable polyhedral grippers have attracted increasing attention for their priority in noncontact capturing missions. Enrichment of these grippers may benefit the conduction of various capturing tasks. In this paper, novel deployable polyhedral grippers are designed. A design flow is proposed for the structural designs of diverse grippers. The core problem during the construction is reducible to the structural designs and combination of multiple synchronously deployable modules. Each module, containing three faces connected by two revolute joints, can realize one-degree-of-freedom deployment. Type synthesis of synchronously deployable modules adopting different layouts of revolute joints is conducted. The mobility and kinematics of these modules are analyzed to verify the achieved motion. As examples, four deployable polyhedral grippers based on different polyhedrons and deployment diagrams are presented. The deployment performance of the prototype proves the validity of the proposed design method, and exhibits the potential of these deployable polyhedral grippers for diverse capturing missions.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"230 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Designs of Novel Deployable Polyhedral Grippers for Noncontact Capturing Missions\",\"authors\":\"Ruijie Tang, Qizhi Meng, Fugui Xie, Xin-Jun Liu, Jinsong Wang\",\"doi\":\"10.1115/1.4063968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Deployable polyhedral grippers have attracted increasing attention for their priority in noncontact capturing missions. Enrichment of these grippers may benefit the conduction of various capturing tasks. In this paper, novel deployable polyhedral grippers are designed. A design flow is proposed for the structural designs of diverse grippers. The core problem during the construction is reducible to the structural designs and combination of multiple synchronously deployable modules. Each module, containing three faces connected by two revolute joints, can realize one-degree-of-freedom deployment. Type synthesis of synchronously deployable modules adopting different layouts of revolute joints is conducted. The mobility and kinematics of these modules are analyzed to verify the achieved motion. As examples, four deployable polyhedral grippers based on different polyhedrons and deployment diagrams are presented. The deployment performance of the prototype proves the validity of the proposed design method, and exhibits the potential of these deployable polyhedral grippers for diverse capturing missions.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063968\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063968","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Structural Designs of Novel Deployable Polyhedral Grippers for Noncontact Capturing Missions
Abstract Deployable polyhedral grippers have attracted increasing attention for their priority in noncontact capturing missions. Enrichment of these grippers may benefit the conduction of various capturing tasks. In this paper, novel deployable polyhedral grippers are designed. A design flow is proposed for the structural designs of diverse grippers. The core problem during the construction is reducible to the structural designs and combination of multiple synchronously deployable modules. Each module, containing three faces connected by two revolute joints, can realize one-degree-of-freedom deployment. Type synthesis of synchronously deployable modules adopting different layouts of revolute joints is conducted. The mobility and kinematics of these modules are analyzed to verify the achieved motion. As examples, four deployable polyhedral grippers based on different polyhedrons and deployment diagrams are presented. The deployment performance of the prototype proves the validity of the proposed design method, and exhibits the potential of these deployable polyhedral grippers for diverse capturing missions.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.