{"title":"一种基于随机森林和神经网络的地震预测新方法","authors":"Nidhi Agarwal, Ishika Arora, Harsh Saini, Ujjwal Sharma","doi":"10.4108/ew.4329","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: This research paper presents an innovative method that merges neural networks and random forest algorithms to enhance earthquake prediction.
 OBJECTIVES: The primary objective of the study is to improve the precision of earthquake prediction by developing a hybrid model that integrates seismic wave data and various extracted features as inputs.
 METHODS: By training a neural network to learn the intricate relationships between the input features and earthquake magnitudes and employing a random forest algorithm to enhance the model's generalization and robustness, the researchers aim to achieve more accurate predictions. To evaluate the effectiveness of the proposed approach, an extensive dataset of earthquake records from diverse regions worldwide was employed.
 RESULTS: The results revealed that the hybrid model surpassed individual models, demonstrating superior prediction accuracy. This advancement holds profound implications for earthquake monitoring and disaster management, as the prompt and accurate detection of earthquake magnitudes is vital for effective mitigation and response strategies.
 CONCLUSION: The significance of this detection technique extends beyond theoretical research, as it can directly benefit organizations like the National Disaster Response Force (NDRF) in their relief efforts. By accurately predicting earthquake magnitudes, the model can facilitate the efficient allocation of resources and the timely delivery of relief materials to areas affected by natural disasters. Ultimately, this research contributes to the growing field of earthquake prediction and reinforces the critical role of data-driven approaches in enhancing our understanding of seismic events, bolstering disaster preparedness, and safeguarding vulnerable communities.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"32 S111","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach for Earthquake Prediction Using Random Forest and Neural Networks\",\"authors\":\"Nidhi Agarwal, Ishika Arora, Harsh Saini, Ujjwal Sharma\",\"doi\":\"10.4108/ew.4329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION: This research paper presents an innovative method that merges neural networks and random forest algorithms to enhance earthquake prediction.
 OBJECTIVES: The primary objective of the study is to improve the precision of earthquake prediction by developing a hybrid model that integrates seismic wave data and various extracted features as inputs.
 METHODS: By training a neural network to learn the intricate relationships between the input features and earthquake magnitudes and employing a random forest algorithm to enhance the model's generalization and robustness, the researchers aim to achieve more accurate predictions. To evaluate the effectiveness of the proposed approach, an extensive dataset of earthquake records from diverse regions worldwide was employed.
 RESULTS: The results revealed that the hybrid model surpassed individual models, demonstrating superior prediction accuracy. This advancement holds profound implications for earthquake monitoring and disaster management, as the prompt and accurate detection of earthquake magnitudes is vital for effective mitigation and response strategies.
 CONCLUSION: The significance of this detection technique extends beyond theoretical research, as it can directly benefit organizations like the National Disaster Response Force (NDRF) in their relief efforts. By accurately predicting earthquake magnitudes, the model can facilitate the efficient allocation of resources and the timely delivery of relief materials to areas affected by natural disasters. Ultimately, this research contributes to the growing field of earthquake prediction and reinforces the critical role of data-driven approaches in enhancing our understanding of seismic events, bolstering disaster preparedness, and safeguarding vulnerable communities.\",\"PeriodicalId\":53458,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\"32 S111\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.4329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.4329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A Novel Approach for Earthquake Prediction Using Random Forest and Neural Networks
INTRODUCTION: This research paper presents an innovative method that merges neural networks and random forest algorithms to enhance earthquake prediction.
OBJECTIVES: The primary objective of the study is to improve the precision of earthquake prediction by developing a hybrid model that integrates seismic wave data and various extracted features as inputs.
METHODS: By training a neural network to learn the intricate relationships between the input features and earthquake magnitudes and employing a random forest algorithm to enhance the model's generalization and robustness, the researchers aim to achieve more accurate predictions. To evaluate the effectiveness of the proposed approach, an extensive dataset of earthquake records from diverse regions worldwide was employed.
RESULTS: The results revealed that the hybrid model surpassed individual models, demonstrating superior prediction accuracy. This advancement holds profound implications for earthquake monitoring and disaster management, as the prompt and accurate detection of earthquake magnitudes is vital for effective mitigation and response strategies.
CONCLUSION: The significance of this detection technique extends beyond theoretical research, as it can directly benefit organizations like the National Disaster Response Force (NDRF) in their relief efforts. By accurately predicting earthquake magnitudes, the model can facilitate the efficient allocation of resources and the timely delivery of relief materials to areas affected by natural disasters. Ultimately, this research contributes to the growing field of earthquake prediction and reinforces the critical role of data-driven approaches in enhancing our understanding of seismic events, bolstering disaster preparedness, and safeguarding vulnerable communities.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.