{"title":"迈向一个新的网络物理控制系统框架:一个深度学习驱动的用例","authors":"Mariam Moufaddal, Asmaa Benghabrit, Imane Bouhaddou","doi":"10.1108/ijius-03-2022-0031","DOIUrl":null,"url":null,"abstract":"Purpose The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”. The ability of companies to cope with these changes is a key competitive advantage requiring the adoption/mastery of industry 4.0 technologies. Therefore, companies must adapt their business processes to fit into similar situations. Design/methodology/approach The proposed methodology comprises three steps. First, a comparative analysis of the existing CPSs is elaborated. Second, following this analysis, a deep learning driven CPS framework is proposed highlighting its components and tiers. Third, a real industrial case is presented to demonstrate the application of the envisioned framework. Deep learning network-based methods of object detection are used to train the model and evaluation is assessed accordingly. Findings The analysis revealed that most of the existing CPS frameworks address manufacturing related subjects. This illustrates the need for a resilient industrial CPS targeting other areas and considering CPSs as loopback systems preserving human–machine interaction, endowed with data tiering approach for easy and fast data access and embedded with deep learning-based computer vision processing methods. Originality/value This study provides insights about what needs to be addressed in terms of challenges faced due to unforeseen situations or adapting to new ones. In this paper, the CPS framework was used as a monitoring system in compliance with the precautionary measures (social distancing) and for self-protection with wearing the necessary equipments. Nevertheless, the proposed framework can be used and adapted to any industrial or non-industrial environments by adjusting object detection purpose.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":"54 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a novel cyber physical control system framework: a deep learning driven use case\",\"authors\":\"Mariam Moufaddal, Asmaa Benghabrit, Imane Bouhaddou\",\"doi\":\"10.1108/ijius-03-2022-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”. The ability of companies to cope with these changes is a key competitive advantage requiring the adoption/mastery of industry 4.0 technologies. Therefore, companies must adapt their business processes to fit into similar situations. Design/methodology/approach The proposed methodology comprises three steps. First, a comparative analysis of the existing CPSs is elaborated. Second, following this analysis, a deep learning driven CPS framework is proposed highlighting its components and tiers. Third, a real industrial case is presented to demonstrate the application of the envisioned framework. Deep learning network-based methods of object detection are used to train the model and evaluation is assessed accordingly. Findings The analysis revealed that most of the existing CPS frameworks address manufacturing related subjects. This illustrates the need for a resilient industrial CPS targeting other areas and considering CPSs as loopback systems preserving human–machine interaction, endowed with data tiering approach for easy and fast data access and embedded with deep learning-based computer vision processing methods. Originality/value This study provides insights about what needs to be addressed in terms of challenges faced due to unforeseen situations or adapting to new ones. In this paper, the CPS framework was used as a monitoring system in compliance with the precautionary measures (social distancing) and for self-protection with wearing the necessary equipments. Nevertheless, the proposed framework can be used and adapted to any industrial or non-industrial environments by adjusting object detection purpose.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-03-2022-0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-03-2022-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
Towards a novel cyber physical control system framework: a deep learning driven use case
Purpose The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”. The ability of companies to cope with these changes is a key competitive advantage requiring the adoption/mastery of industry 4.0 technologies. Therefore, companies must adapt their business processes to fit into similar situations. Design/methodology/approach The proposed methodology comprises three steps. First, a comparative analysis of the existing CPSs is elaborated. Second, following this analysis, a deep learning driven CPS framework is proposed highlighting its components and tiers. Third, a real industrial case is presented to demonstrate the application of the envisioned framework. Deep learning network-based methods of object detection are used to train the model and evaluation is assessed accordingly. Findings The analysis revealed that most of the existing CPS frameworks address manufacturing related subjects. This illustrates the need for a resilient industrial CPS targeting other areas and considering CPSs as loopback systems preserving human–machine interaction, endowed with data tiering approach for easy and fast data access and embedded with deep learning-based computer vision processing methods. Originality/value This study provides insights about what needs to be addressed in terms of challenges faced due to unforeseen situations or adapting to new ones. In this paper, the CPS framework was used as a monitoring system in compliance with the precautionary measures (social distancing) and for self-protection with wearing the necessary equipments. Nevertheless, the proposed framework can be used and adapted to any industrial or non-industrial environments by adjusting object detection purpose.