{"title":"需求,目标,两者都有,还是两者都没有:如何为创新竞赛制定复杂的设计问题","authors":"Ademir-Paolo Vrolijk, Zoe Szajnfarber","doi":"10.1115/1.4063568","DOIUrl":null,"url":null,"abstract":"Abstract Technical organizations increasingly rely on innovation contests to find novel ideas for designing complex systems. These activities involve outsiders in the early stages of the design process, potentially leading to ground-breaking designs that surpass expectations. Here, the contest's rules document plays a crucial role: this design artifact communicates the organization's problem and the desired system performance to the participants—significantly impacting the resulting solutions. However, the contest's nature amplifies the challenges of communicating complex design problems across boundaries. Existing strategies for formulating—i.e., requirement and objective allocation—might not suit this context. We developed an inductive model of their formulation process based on a multi-year field study of five complex innovation contests. We found that the formulation team (or “seeker”) balanced the need to communicate their problem in detail with the risk of excluding valuable participants. Here, they chose among three approaches—incentivize, impose, or subsume—depending on their knowledge of potential solutions and the participants' capabilities. Notably, the seeker formulated more granularly than the literature describes, employing multiple approaches within each rules document. These findings shed light on a poorly understood aspect of innovation contests, resolve a longstanding debate in the engineering design literature, and guide practitioners' formulation processes.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"44 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REQUIREMENTS, OBJECTIVES, BOTH, OR NEITHER: HOW TO FORMULATE COMPLEX DESIGN PROBLEMS FOR INNOVATION CONTESTS\",\"authors\":\"Ademir-Paolo Vrolijk, Zoe Szajnfarber\",\"doi\":\"10.1115/1.4063568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Technical organizations increasingly rely on innovation contests to find novel ideas for designing complex systems. These activities involve outsiders in the early stages of the design process, potentially leading to ground-breaking designs that surpass expectations. Here, the contest's rules document plays a crucial role: this design artifact communicates the organization's problem and the desired system performance to the participants—significantly impacting the resulting solutions. However, the contest's nature amplifies the challenges of communicating complex design problems across boundaries. Existing strategies for formulating—i.e., requirement and objective allocation—might not suit this context. We developed an inductive model of their formulation process based on a multi-year field study of five complex innovation contests. We found that the formulation team (or “seeker”) balanced the need to communicate their problem in detail with the risk of excluding valuable participants. Here, they chose among three approaches—incentivize, impose, or subsume—depending on their knowledge of potential solutions and the participants' capabilities. Notably, the seeker formulated more granularly than the literature describes, employing multiple approaches within each rules document. These findings shed light on a poorly understood aspect of innovation contests, resolve a longstanding debate in the engineering design literature, and guide practitioners' formulation processes.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063568\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063568","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
REQUIREMENTS, OBJECTIVES, BOTH, OR NEITHER: HOW TO FORMULATE COMPLEX DESIGN PROBLEMS FOR INNOVATION CONTESTS
Abstract Technical organizations increasingly rely on innovation contests to find novel ideas for designing complex systems. These activities involve outsiders in the early stages of the design process, potentially leading to ground-breaking designs that surpass expectations. Here, the contest's rules document plays a crucial role: this design artifact communicates the organization's problem and the desired system performance to the participants—significantly impacting the resulting solutions. However, the contest's nature amplifies the challenges of communicating complex design problems across boundaries. Existing strategies for formulating—i.e., requirement and objective allocation—might not suit this context. We developed an inductive model of their formulation process based on a multi-year field study of five complex innovation contests. We found that the formulation team (or “seeker”) balanced the need to communicate their problem in detail with the risk of excluding valuable participants. Here, they chose among three approaches—incentivize, impose, or subsume—depending on their knowledge of potential solutions and the participants' capabilities. Notably, the seeker formulated more granularly than the literature describes, employing multiple approaches within each rules document. These findings shed light on a poorly understood aspect of innovation contests, resolve a longstanding debate in the engineering design literature, and guide practitioners' formulation processes.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.