探索和可视化多元时间序列中的时间关系

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2023-12-01 DOI:10.1016/j.visinf.2023.09.001
Gota Shirato , Natalia Andrienko , Gennady Andrienko
{"title":"探索和可视化多元时间序列中的时间关系","authors":"Gota Shirato ,&nbsp;Natalia Andrienko ,&nbsp;Gennady Andrienko","doi":"10.1016/j.visinf.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces an approach to analyzing multivariate time series (MVTS) data through <em>progressive temporal abstraction</em> of the data into <em>patterns</em> characterizing the behavior of the studied dynamic phenomenon. The paper focuses on two core challenges: identifying basic behavior patterns of individual attributes and examining the <em>temporal relations</em> between these patterns across the range of attributes to derive higher-level abstractions of multi-attribute behavior. The proposed approach combines existing methods for univariate pattern extraction, computation of temporal relations according to the Allen’s time interval algebra, visual displays of the temporal relations, and interactive query operations into a cohesive visual analytics workflow. The paper describes the application of the approach to real-world examples of population mobility data during the COVID-19 pandemic and characteristics of episodes in a football match, illustrating its versatility and effectiveness in understanding composite patterns of interrelated attribute behaviors in MVTS data.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"7 4","pages":"Pages 57-72"},"PeriodicalIF":3.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X23000396/pdfft?md5=9b0ac41932e7ef9a3c5ba8074dca4e23&pid=1-s2.0-S2468502X23000396-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring and visualizing temporal relations in multivariate time series\",\"authors\":\"Gota Shirato ,&nbsp;Natalia Andrienko ,&nbsp;Gennady Andrienko\",\"doi\":\"10.1016/j.visinf.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces an approach to analyzing multivariate time series (MVTS) data through <em>progressive temporal abstraction</em> of the data into <em>patterns</em> characterizing the behavior of the studied dynamic phenomenon. The paper focuses on two core challenges: identifying basic behavior patterns of individual attributes and examining the <em>temporal relations</em> between these patterns across the range of attributes to derive higher-level abstractions of multi-attribute behavior. The proposed approach combines existing methods for univariate pattern extraction, computation of temporal relations according to the Allen’s time interval algebra, visual displays of the temporal relations, and interactive query operations into a cohesive visual analytics workflow. The paper describes the application of the approach to real-world examples of population mobility data during the COVID-19 pandemic and characteristics of episodes in a football match, illustrating its versatility and effectiveness in understanding composite patterns of interrelated attribute behaviors in MVTS data.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"7 4\",\"pages\":\"Pages 57-72\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X23000396/pdfft?md5=9b0ac41932e7ef9a3c5ba8074dca4e23&pid=1-s2.0-S2468502X23000396-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X23000396\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X23000396","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种分析多变量时间序列(MVTS)数据的方法,该方法将数据逐级时间抽象为表征所研究动态现象行为的模式。本文关注两个核心挑战:识别单个属性的基本行为模式和检查这些模式在属性范围内的时间关系,以获得多属性行为的更高级别抽象。该方法将现有的单变量模式提取方法、基于Allen时间间隔代数的时间关系计算方法、时间关系的可视化显示方法和交互式查询操作方法结合成一个内聚的可视化分析工作流。本文介绍了该方法在COVID-19大流行期间人口流动数据和足球比赛事件特征的实际示例中的应用,说明了其在理解MVTS数据中相互关联属性行为复合模式方面的通用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring and visualizing temporal relations in multivariate time series

This paper introduces an approach to analyzing multivariate time series (MVTS) data through progressive temporal abstraction of the data into patterns characterizing the behavior of the studied dynamic phenomenon. The paper focuses on two core challenges: identifying basic behavior patterns of individual attributes and examining the temporal relations between these patterns across the range of attributes to derive higher-level abstractions of multi-attribute behavior. The proposed approach combines existing methods for univariate pattern extraction, computation of temporal relations according to the Allen’s time interval algebra, visual displays of the temporal relations, and interactive query operations into a cohesive visual analytics workflow. The paper describes the application of the approach to real-world examples of population mobility data during the COVID-19 pandemic and characteristics of episodes in a football match, illustrating its versatility and effectiveness in understanding composite patterns of interrelated attribute behaviors in MVTS data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1