{"title":"ETRSS-1在轨性能分析及异常处理","authors":"Gadisa Dinaol","doi":"10.1016/j.jsse.2023.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>The Ethiopian remote sensing<span> microsatellite<span>, weighing 65 kg, was successfully launched into sun-synchronous orbit at an altitude of 628 km in 2019. The satellite has a three-year lifespan and employs a maneuver that minimizes the orbit perigee without adjusting the orbit apogee, resulting in an eccentric disposal orbit, with the perigee altitude<span> selected to ensure re-entry into the Earth’s atmosphere within 25 years. This study presents an overview of the ETRSS-1 satellite system, including its subsystems alongside the hardware utilized during their development, as well as an analysis of its on-orbit performance. Furthermore, the spacecraft’s electro-optical multispectral camera and its ability to capture remote sensing data while adhering to appropriate operational constraints, as well as its imaging mission techniques, various types of failure modes, and anomaly detection detection techniques, will be investigated.</span></span></span></p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":"10 4","pages":"Pages 483-494"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of ETRSS-1 on-orbit performance and anomaly management\",\"authors\":\"Gadisa Dinaol\",\"doi\":\"10.1016/j.jsse.2023.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Ethiopian remote sensing<span> microsatellite<span>, weighing 65 kg, was successfully launched into sun-synchronous orbit at an altitude of 628 km in 2019. The satellite has a three-year lifespan and employs a maneuver that minimizes the orbit perigee without adjusting the orbit apogee, resulting in an eccentric disposal orbit, with the perigee altitude<span> selected to ensure re-entry into the Earth’s atmosphere within 25 years. This study presents an overview of the ETRSS-1 satellite system, including its subsystems alongside the hardware utilized during their development, as well as an analysis of its on-orbit performance. Furthermore, the spacecraft’s electro-optical multispectral camera and its ability to capture remote sensing data while adhering to appropriate operational constraints, as well as its imaging mission techniques, various types of failure modes, and anomaly detection detection techniques, will be investigated.</span></span></span></p></div>\",\"PeriodicalId\":37283,\"journal\":{\"name\":\"Journal of Space Safety Engineering\",\"volume\":\"10 4\",\"pages\":\"Pages 483-494\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Space Safety Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468896723000885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896723000885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Analysis of ETRSS-1 on-orbit performance and anomaly management
The Ethiopian remote sensing microsatellite, weighing 65 kg, was successfully launched into sun-synchronous orbit at an altitude of 628 km in 2019. The satellite has a three-year lifespan and employs a maneuver that minimizes the orbit perigee without adjusting the orbit apogee, resulting in an eccentric disposal orbit, with the perigee altitude selected to ensure re-entry into the Earth’s atmosphere within 25 years. This study presents an overview of the ETRSS-1 satellite system, including its subsystems alongside the hardware utilized during their development, as well as an analysis of its on-orbit performance. Furthermore, the spacecraft’s electro-optical multispectral camera and its ability to capture remote sensing data while adhering to appropriate operational constraints, as well as its imaging mission techniques, various types of failure modes, and anomaly detection detection techniques, will be investigated.