Xiaolong Ji , Zhe Li , Mingyu Zhang , Shaoyu Lang , Xingshun Song
{"title":"ChMYB1-ChbHLH42-ChTTG1 模块调控脱落酸诱导的红豆杉花青素生物合成","authors":"Xiaolong Ji , Zhe Li , Mingyu Zhang , Shaoyu Lang , Xingshun Song","doi":"10.1016/j.hpj.2023.05.015","DOIUrl":null,"url":null,"abstract":"<div><p><em>Cerasus humilis</em> is a kind of economic fruit tree peculiar to China, which is widely used in the food, landscape, and pharmaceutical industries. Anthocyanins are a phenolic metabolite that plays an essential role in fruit coloration. However, the regulatory network of <em>C. humilis</em> in anthocyanin biosynthesis is still unclear. In this study, the R2R3-MYB transcription factor ChMYB1 was isolated from the full genome of the species. Yeast one-hybrid, dual-luciferase assays, and GUS staining showed that ChMYB1 significantly increased anthocyanin contents in <em>C. humilis</em> fruit by promoting the expression of <em>ChCHS</em> and <em>ChUFGT</em> by binding MBS (MYB-binding elements). ChMYB1 interacted with ChbHLH42 and ChTTG1 to form the MBW complex and further enhanced the expression of <em>ChUFGT</em>. In addition, abscisic acid (ABA) treatment promoted the expression of <em>ChMYB1</em> and anthocyanin accumulation in <em>C. humilis</em> fruit. Interestingly, ABA treatment enhanced the interaction between ChMYB1 and ChbHLH42. Furthermore, ChABI5 inhibited the interaction between ChMYB1 and ChbHLH42. Our data elucidated the primary molecular mechanism of anthocyanin biosynthesis in <em>C. humilis</em> fruit, deepening the understanding of the regulatory network affecting anthocyanin metabolism in edible fruit crops.</p></div>","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"10 1","pages":"Pages 51-65"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468014123001450/pdfft?md5=c6dce08a866c2a449e6481983c0f25b7&pid=1-s2.0-S2468014123001450-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ChMYB1-ChbHLH42-ChTTG1 module regulates abscisic acid-induced anthocyanin biosynthesis in Cerasus humilis\",\"authors\":\"Xiaolong Ji , Zhe Li , Mingyu Zhang , Shaoyu Lang , Xingshun Song\",\"doi\":\"10.1016/j.hpj.2023.05.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Cerasus humilis</em> is a kind of economic fruit tree peculiar to China, which is widely used in the food, landscape, and pharmaceutical industries. Anthocyanins are a phenolic metabolite that plays an essential role in fruit coloration. However, the regulatory network of <em>C. humilis</em> in anthocyanin biosynthesis is still unclear. In this study, the R2R3-MYB transcription factor ChMYB1 was isolated from the full genome of the species. Yeast one-hybrid, dual-luciferase assays, and GUS staining showed that ChMYB1 significantly increased anthocyanin contents in <em>C. humilis</em> fruit by promoting the expression of <em>ChCHS</em> and <em>ChUFGT</em> by binding MBS (MYB-binding elements). ChMYB1 interacted with ChbHLH42 and ChTTG1 to form the MBW complex and further enhanced the expression of <em>ChUFGT</em>. In addition, abscisic acid (ABA) treatment promoted the expression of <em>ChMYB1</em> and anthocyanin accumulation in <em>C. humilis</em> fruit. Interestingly, ABA treatment enhanced the interaction between ChMYB1 and ChbHLH42. Furthermore, ChABI5 inhibited the interaction between ChMYB1 and ChbHLH42. Our data elucidated the primary molecular mechanism of anthocyanin biosynthesis in <em>C. humilis</em> fruit, deepening the understanding of the regulatory network affecting anthocyanin metabolism in edible fruit crops.</p></div>\",\"PeriodicalId\":13178,\"journal\":{\"name\":\"Horticultural Plant Journal\",\"volume\":\"10 1\",\"pages\":\"Pages 51-65\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468014123001450/pdfft?md5=c6dce08a866c2a449e6481983c0f25b7&pid=1-s2.0-S2468014123001450-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Plant Journal\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468014123001450\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468014123001450","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
ChMYB1-ChbHLH42-ChTTG1 module regulates abscisic acid-induced anthocyanin biosynthesis in Cerasus humilis
Cerasus humilis is a kind of economic fruit tree peculiar to China, which is widely used in the food, landscape, and pharmaceutical industries. Anthocyanins are a phenolic metabolite that plays an essential role in fruit coloration. However, the regulatory network of C. humilis in anthocyanin biosynthesis is still unclear. In this study, the R2R3-MYB transcription factor ChMYB1 was isolated from the full genome of the species. Yeast one-hybrid, dual-luciferase assays, and GUS staining showed that ChMYB1 significantly increased anthocyanin contents in C. humilis fruit by promoting the expression of ChCHS and ChUFGT by binding MBS (MYB-binding elements). ChMYB1 interacted with ChbHLH42 and ChTTG1 to form the MBW complex and further enhanced the expression of ChUFGT. In addition, abscisic acid (ABA) treatment promoted the expression of ChMYB1 and anthocyanin accumulation in C. humilis fruit. Interestingly, ABA treatment enhanced the interaction between ChMYB1 and ChbHLH42. Furthermore, ChABI5 inhibited the interaction between ChMYB1 and ChbHLH42. Our data elucidated the primary molecular mechanism of anthocyanin biosynthesis in C. humilis fruit, deepening the understanding of the regulatory network affecting anthocyanin metabolism in edible fruit crops.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.