验证基于效果处理程序的逐运行定义反向模式AD库

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Logical Methods in Computer Science Pub Date : 2023-10-23 DOI:10.46298/lmcs-19(4:5)2023
Paulo Emílio de Vilhena, François Pottier
{"title":"验证基于效果处理程序的逐运行定义反向模式AD库","authors":"Paulo Emílio de Vilhena, François Pottier","doi":"10.46298/lmcs-19(4:5)2023","DOIUrl":null,"url":null,"abstract":"We apply program verification technology to the problem of specifying and verifying automatic differentiation (AD) algorithms. We focus on define-by-run, a style of AD where the program that must be differentiated is executed and monitored by the automatic differentiation algorithm. We begin by asking, \"what is an implementation of AD?\" and \"what does it mean for an implementation of AD to be correct?\" We answer these questions both at an informal level, in precise English prose, and at a formal level, using types and logical assertions. After answering these broad questions, we focus on a specific implementation of AD, which involves a number of subtle programming-language features, including dynamically allocated mutable state, first-class functions, and effect handlers. We present a machine-checked proof, expressed in a modern variant of Separation Logic, of its correctness. We view this result as an advanced exercise in program verification, with potential future applications to the verification of more realistic automatic differentiation systems and of other software components that exploit delimited-control effects.","PeriodicalId":49904,"journal":{"name":"Logical Methods in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Verifying an Effect-Handler-Based Define-By-Run Reverse-Mode AD Library\",\"authors\":\"Paulo Emílio de Vilhena, François Pottier\",\"doi\":\"10.46298/lmcs-19(4:5)2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply program verification technology to the problem of specifying and verifying automatic differentiation (AD) algorithms. We focus on define-by-run, a style of AD where the program that must be differentiated is executed and monitored by the automatic differentiation algorithm. We begin by asking, \\\"what is an implementation of AD?\\\" and \\\"what does it mean for an implementation of AD to be correct?\\\" We answer these questions both at an informal level, in precise English prose, and at a formal level, using types and logical assertions. After answering these broad questions, we focus on a specific implementation of AD, which involves a number of subtle programming-language features, including dynamically allocated mutable state, first-class functions, and effect handlers. We present a machine-checked proof, expressed in a modern variant of Separation Logic, of its correctness. We view this result as an advanced exercise in program verification, with potential future applications to the verification of more realistic automatic differentiation systems and of other software components that exploit delimited-control effects.\",\"PeriodicalId\":49904,\"journal\":{\"name\":\"Logical Methods in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logical Methods in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-19(4:5)2023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Methods in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(4:5)2023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

将程序验证技术应用于自动微分(AD)算法的指定和验证问题。我们专注于逐行定义,这是一种AD风格,其中必须被区分的程序由自动区分算法执行和监控。我们首先要问,“什么是AD的实现?”以及“AD的正确实现意味着什么?”我们在非正式层面(用精确的英语散文)和正式层面(用类型和逻辑断言)回答这些问题。在回答了这些广泛的问题之后,我们将重点关注AD的具体实现,它涉及许多微妙的编程语言特性,包括动态分配的可变状态、一等函数和效果处理程序。我们提出了一个机器检验的证明,用分离逻辑的现代变体来表示它的正确性。我们认为这一结果是程序验证的高级练习,具有潜在的未来应用于验证更现实的自动区分系统和其他利用分隔控制效果的软件组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verifying an Effect-Handler-Based Define-By-Run Reverse-Mode AD Library
We apply program verification technology to the problem of specifying and verifying automatic differentiation (AD) algorithms. We focus on define-by-run, a style of AD where the program that must be differentiated is executed and monitored by the automatic differentiation algorithm. We begin by asking, "what is an implementation of AD?" and "what does it mean for an implementation of AD to be correct?" We answer these questions both at an informal level, in precise English prose, and at a formal level, using types and logical assertions. After answering these broad questions, we focus on a specific implementation of AD, which involves a number of subtle programming-language features, including dynamically allocated mutable state, first-class functions, and effect handlers. We present a machine-checked proof, expressed in a modern variant of Separation Logic, of its correctness. We view this result as an advanced exercise in program verification, with potential future applications to the verification of more realistic automatic differentiation systems and of other software components that exploit delimited-control effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Logical Methods in Computer Science
Logical Methods in Computer Science 工程技术-计算机:理论方法
CiteScore
1.80
自引率
0.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: Logical Methods in Computer Science is a fully refereed, open access, free, electronic journal. It welcomes papers on theoretical and practical areas in computer science involving logical methods, taken in a broad sense; some particular areas within its scope are listed below. Papers are refereed in the traditional way, with two or more referees per paper. Copyright is retained by the author. Topics of Logical Methods in Computer Science: Algebraic methods Automata and logic Automated deduction Categorical models and logic Coalgebraic methods Computability and Logic Computer-aided verification Concurrency theory Constraint programming Cyber-physical systems Database theory Defeasible reasoning Domain theory Emerging topics: Computational systems in biology Emerging topics: Quantum computation and logic Finite model theory Formalized mathematics Functional programming and lambda calculus Inductive logic and learning Interactive proof checking Logic and algorithms Logic and complexity Logic and games Logic and probability Logic for knowledge representation Logic programming Logics of programs Modal and temporal logics Program analysis and type checking Program development and specification Proof complexity Real time and hybrid systems Reasoning about actions and planning Satisfiability Security Semantics of programming languages Term rewriting and equational logic Type theory and constructive mathematics.
期刊最新文献
Node Replication: Theory And Practice A categorical characterization of relative entropy on standard Borel spaces The Power-Set Construction for Tree Algebras Token Games and History-Deterministic Quantitative-Automata A coherent differential PCF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1