{"title":"利用不同的人工智能技术对建筑构件进行高效状态评估
","authors":"Kareem Tarek Mostafa, Hani Ahmed, Tarek Hegazy","doi":"10.1139/cjce-2023-0046","DOIUrl":null,"url":null,"abstract":"Facility management maintains building service quality through cycles of condition assessments and rehabilitations. Building components, however, differ in their nature, service lives, deterioration patterns, and textual/visual inspection data. This complicates the condition assessment process and subsequent rehabilitation decisions. This paper proposes a smart condition assessment framework that uses different artificial intelligence (AI) techniques that suit the condition data analysis of different building components. The framework has been applied to a dataset of over 2000 maintenance requests for roof and HVAC systems across a 600-villa portfolio. To address their varying needs, Convolutional Neural Networks (CNNs) were used on images of roof defects, while enhanced data mining was used on textual data of HVAC systems. Accordingly, work packages of deteriorated components were identified, and a 60-day schedule was developed to repair 203 HVAC units. This research shows how AI can assist facility management with respect to condition assessment, rehabilitation planning, and resource allocation.","PeriodicalId":9414,"journal":{"name":"Canadian Journal of Civil Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Different Artificial Intelligence Techniques for Efficient Condition Assessment of Building Components
\",\"authors\":\"Kareem Tarek Mostafa, Hani Ahmed, Tarek Hegazy\",\"doi\":\"10.1139/cjce-2023-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facility management maintains building service quality through cycles of condition assessments and rehabilitations. Building components, however, differ in their nature, service lives, deterioration patterns, and textual/visual inspection data. This complicates the condition assessment process and subsequent rehabilitation decisions. This paper proposes a smart condition assessment framework that uses different artificial intelligence (AI) techniques that suit the condition data analysis of different building components. The framework has been applied to a dataset of over 2000 maintenance requests for roof and HVAC systems across a 600-villa portfolio. To address their varying needs, Convolutional Neural Networks (CNNs) were used on images of roof defects, while enhanced data mining was used on textual data of HVAC systems. Accordingly, work packages of deteriorated components were identified, and a 60-day schedule was developed to repair 203 HVAC units. This research shows how AI can assist facility management with respect to condition assessment, rehabilitation planning, and resource allocation.\",\"PeriodicalId\":9414,\"journal\":{\"name\":\"Canadian Journal of Civil Engineering\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cjce-2023-0046\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cjce-2023-0046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Utilizing Different Artificial Intelligence Techniques for Efficient Condition Assessment of Building Components
Facility management maintains building service quality through cycles of condition assessments and rehabilitations. Building components, however, differ in their nature, service lives, deterioration patterns, and textual/visual inspection data. This complicates the condition assessment process and subsequent rehabilitation decisions. This paper proposes a smart condition assessment framework that uses different artificial intelligence (AI) techniques that suit the condition data analysis of different building components. The framework has been applied to a dataset of over 2000 maintenance requests for roof and HVAC systems across a 600-villa portfolio. To address their varying needs, Convolutional Neural Networks (CNNs) were used on images of roof defects, while enhanced data mining was used on textual data of HVAC systems. Accordingly, work packages of deteriorated components were identified, and a 60-day schedule was developed to repair 203 HVAC units. This research shows how AI can assist facility management with respect to condition assessment, rehabilitation planning, and resource allocation.
期刊介绍:
The Canadian Journal of Civil Engineering is the official journal of the Canadian Society for Civil Engineering. It contains articles on environmental engineering, hydrotechnical engineering, structural engineering, construction engineering, engineering mechanics, engineering materials, and history of civil engineering. Contributors include recognized researchers and practitioners in industry, government, and academia. New developments in engineering design and construction are also featured.