{"title":"海上导管架结构管状接头的周动力分析","authors":"Pranitha Bachimanchi, Nilanjan Saha","doi":"10.1115/1.4064015","DOIUrl":null,"url":null,"abstract":"Abstract Peridynamic theory is the reformulation of classical mechanics mathematical theory compatible with cracks while performing structural analysis. The present study models the tubular joints having T, Y, K, and X configurations in the peridynamic framework by implementing peridynamic shell governing equations. The magnitude of deformations under static loading and the displacement variation at the subsequent load steps varying in a sinusoidal and irregular manner are validated. The crack initiation location at the stress-concentrated region and the crack growth path leading to fracture under linearly increasing loads for the considered tubular joints can be inferred from this approach. A comparative study is performed among the joint configurations based on the linear displacement variation and critical loads for the unstable deformation due to damaged material points at the joint intersection. In the present paper, apart from validating the implementation of novel theory in the offshore structure, the drawbacks and intricacies of the classical approach for studying crack initiation and growth in complex tubular joint structures are resolved by the peridynamic approach.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"76 5","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEridynamic Analysis of Tubular Joints of Offshore Jacket Structure\",\"authors\":\"Pranitha Bachimanchi, Nilanjan Saha\",\"doi\":\"10.1115/1.4064015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Peridynamic theory is the reformulation of classical mechanics mathematical theory compatible with cracks while performing structural analysis. The present study models the tubular joints having T, Y, K, and X configurations in the peridynamic framework by implementing peridynamic shell governing equations. The magnitude of deformations under static loading and the displacement variation at the subsequent load steps varying in a sinusoidal and irregular manner are validated. The crack initiation location at the stress-concentrated region and the crack growth path leading to fracture under linearly increasing loads for the considered tubular joints can be inferred from this approach. A comparative study is performed among the joint configurations based on the linear displacement variation and critical loads for the unstable deformation due to damaged material points at the joint intersection. In the present paper, apart from validating the implementation of novel theory in the offshore structure, the drawbacks and intricacies of the classical approach for studying crack initiation and growth in complex tubular joint structures are resolved by the peridynamic approach.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":\"76 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064015\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
PEridynamic Analysis of Tubular Joints of Offshore Jacket Structure
Abstract Peridynamic theory is the reformulation of classical mechanics mathematical theory compatible with cracks while performing structural analysis. The present study models the tubular joints having T, Y, K, and X configurations in the peridynamic framework by implementing peridynamic shell governing equations. The magnitude of deformations under static loading and the displacement variation at the subsequent load steps varying in a sinusoidal and irregular manner are validated. The crack initiation location at the stress-concentrated region and the crack growth path leading to fracture under linearly increasing loads for the considered tubular joints can be inferred from this approach. A comparative study is performed among the joint configurations based on the linear displacement variation and critical loads for the unstable deformation due to damaged material points at the joint intersection. In the present paper, apart from validating the implementation of novel theory in the offshore structure, the drawbacks and intricacies of the classical approach for studying crack initiation and growth in complex tubular joint structures are resolved by the peridynamic approach.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.