多层泡沫夹层结构水下脉冲响应研究

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme Pub Date : 2023-11-07 DOI:10.1115/1.4064016
Zhengsong An, Yong Chen, Wei Huang, Lin Yu, Sihua Deng, Jiayi Liu
{"title":"多层泡沫夹层结构水下脉冲响应研究","authors":"Zhengsong An, Yong Chen, Wei Huang, Lin Yu, Sihua Deng, Jiayi Liu","doi":"10.1115/1.4064016","DOIUrl":null,"url":null,"abstract":"Abstract The coupling between fluid-solid interaction and structural response is a crucial factor in understanding the resistance of sandwich structures to underwater blasts. In this study, we present a theoretical model that predicts the dynamic response of multilayer foam core sandwich beams subjected to underwater impulses. We carried out a time-scale intercoupling analysis by considering the compressible core in both incident impulse and structural response. In the incident impulse coupling phase, the one-dimensional fluid-structure interaction in terms of cavitation evolution is conducted to obtain the incident pressure profile. A four inter-stages response model is proposed for further analyze the structural response coupling phase and its coupling with core strength. Explicit finite element calculations are performed to verify the theoretical results in terms of the velocity profile, transverse deflection, and core compression. The results suggest that the interaction between the four stages of the dynamic response is significantly influenced by the impulsive intensity and core strength, and the sandwich beam does not undergo all the four stages. The equivalent core strength used in the theoretical analysis is confirmed accurate to predicts impact resistance of the corresponding graded core sandwich beam, which is inferior to the sandwich beam with uniform cores, despite having the same areal mass.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"79 2","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underwater impulsive response of sandwich structure with multilayer foam core\",\"authors\":\"Zhengsong An, Yong Chen, Wei Huang, Lin Yu, Sihua Deng, Jiayi Liu\",\"doi\":\"10.1115/1.4064016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The coupling between fluid-solid interaction and structural response is a crucial factor in understanding the resistance of sandwich structures to underwater blasts. In this study, we present a theoretical model that predicts the dynamic response of multilayer foam core sandwich beams subjected to underwater impulses. We carried out a time-scale intercoupling analysis by considering the compressible core in both incident impulse and structural response. In the incident impulse coupling phase, the one-dimensional fluid-structure interaction in terms of cavitation evolution is conducted to obtain the incident pressure profile. A four inter-stages response model is proposed for further analyze the structural response coupling phase and its coupling with core strength. Explicit finite element calculations are performed to verify the theoretical results in terms of the velocity profile, transverse deflection, and core compression. The results suggest that the interaction between the four stages of the dynamic response is significantly influenced by the impulsive intensity and core strength, and the sandwich beam does not undergo all the four stages. The equivalent core strength used in the theoretical analysis is confirmed accurate to predicts impact resistance of the corresponding graded core sandwich beam, which is inferior to the sandwich beam with uniform cores, despite having the same areal mass.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":\"79 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064016\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

流固耦合与结构响应之间的耦合是理解夹层结构水下爆炸抗力的关键因素。在本研究中,我们提出了一个理论模型来预测多层泡沫芯夹层梁在水下脉冲作用下的动力响应。通过考虑入射脉冲和结构响应的可压缩核进行了时间尺度的耦合分析。在入射脉冲耦合阶段,从空化演化的角度进行一维流固耦合,得到入射压力剖面。为了进一步分析结构响应耦合阶段及其与岩心强度的耦合关系,提出了四阶间响应模型。明确的有限元计算进行了验证理论结果方面的速度分布,横向挠度,和核心压缩。结果表明:夹层梁动力响应的四个阶段之间的相互作用受脉冲强度和核心强度的显著影响,而夹层梁并非全部经历这四个阶段。验证了理论分析中使用的等效岩心强度能够准确预测相应分级岩心夹层梁的抗冲击能力,在面积质量相同的情况下,其抗冲击能力不如均匀岩心夹层梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Underwater impulsive response of sandwich structure with multilayer foam core
Abstract The coupling between fluid-solid interaction and structural response is a crucial factor in understanding the resistance of sandwich structures to underwater blasts. In this study, we present a theoretical model that predicts the dynamic response of multilayer foam core sandwich beams subjected to underwater impulses. We carried out a time-scale intercoupling analysis by considering the compressible core in both incident impulse and structural response. In the incident impulse coupling phase, the one-dimensional fluid-structure interaction in terms of cavitation evolution is conducted to obtain the incident pressure profile. A four inter-stages response model is proposed for further analyze the structural response coupling phase and its coupling with core strength. Explicit finite element calculations are performed to verify the theoretical results in terms of the velocity profile, transverse deflection, and core compression. The results suggest that the interaction between the four stages of the dynamic response is significantly influenced by the impulsive intensity and core strength, and the sandwich beam does not undergo all the four stages. The equivalent core strength used in the theoretical analysis is confirmed accurate to predicts impact resistance of the corresponding graded core sandwich beam, which is inferior to the sandwich beam with uniform cores, despite having the same areal mass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
期刊最新文献
PEridynamic Analysis of Tubular Joints of Offshore Jacket Structure Underwater impulsive response of sandwich structure with multilayer foam core Numerical Study on the Automatic Ballast Control of a Floating Dock Gravity wave interaction with a composite pile-rock breakwater Modelling Green Water Load on A Deck Mounted Circular Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1