{"title":"基于组合相位差的宽带高精度多基线二维测向","authors":"Chang-Ryul Yun, Dae-Gyu Choi, Kyu-Song Lee","doi":"10.5515/kjkiees.2023.34.5.424","DOIUrl":null,"url":null,"abstract":"In wideband interferometer direction finding, the inherent non-linearity owing to radome, antenna, and signal polarization can cause non-uniform phase propagation along the incident of the signal, leading to distortion of phase difference between receivers. This affects the accuracy of direction finding, particularly in two-dimensional direction finding where azimuth and elevation are mutually influential. In this study, we proposed a two-dimensional direction finding method to divide the detection range into several areas based on azimuth and elevation axes, select the area through a two-dimensional rough direction finding operation, and perform direction finding by correlation operation in the selected area. In addition, combination azimuth and combination elevation phase differences that are robust against phase delay distortion were used in two-dimensional rough direction operations. This method overcame nonlinear phase transfer characteristics and minimized the increase in error as the incidence angle increased. Performance tests confirmed that the proposed algorithm achieved high accuracy two-dimensional direction finding in a wideband (H/I/J band) system with a measurement error of 1 degree or less in the detection range, even in the presence of nonlinear characteristics of radome/antenna.","PeriodicalId":55817,"journal":{"name":"Journal of the Korean Institute of Electromagnetic Engineering and Science","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wideband High-Precision Multi-Baseline Two-Dimensional Direction Finding Using Combination Phase Differences\",\"authors\":\"Chang-Ryul Yun, Dae-Gyu Choi, Kyu-Song Lee\",\"doi\":\"10.5515/kjkiees.2023.34.5.424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wideband interferometer direction finding, the inherent non-linearity owing to radome, antenna, and signal polarization can cause non-uniform phase propagation along the incident of the signal, leading to distortion of phase difference between receivers. This affects the accuracy of direction finding, particularly in two-dimensional direction finding where azimuth and elevation are mutually influential. In this study, we proposed a two-dimensional direction finding method to divide the detection range into several areas based on azimuth and elevation axes, select the area through a two-dimensional rough direction finding operation, and perform direction finding by correlation operation in the selected area. In addition, combination azimuth and combination elevation phase differences that are robust against phase delay distortion were used in two-dimensional rough direction operations. This method overcame nonlinear phase transfer characteristics and minimized the increase in error as the incidence angle increased. Performance tests confirmed that the proposed algorithm achieved high accuracy two-dimensional direction finding in a wideband (H/I/J band) system with a measurement error of 1 degree or less in the detection range, even in the presence of nonlinear characteristics of radome/antenna.\",\"PeriodicalId\":55817,\"journal\":{\"name\":\"Journal of the Korean Institute of Electromagnetic Engineering and Science\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Institute of Electromagnetic Engineering and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5515/kjkiees.2023.34.5.424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Institute of Electromagnetic Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5515/kjkiees.2023.34.5.424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wideband High-Precision Multi-Baseline Two-Dimensional Direction Finding Using Combination Phase Differences
In wideband interferometer direction finding, the inherent non-linearity owing to radome, antenna, and signal polarization can cause non-uniform phase propagation along the incident of the signal, leading to distortion of phase difference between receivers. This affects the accuracy of direction finding, particularly in two-dimensional direction finding where azimuth and elevation are mutually influential. In this study, we proposed a two-dimensional direction finding method to divide the detection range into several areas based on azimuth and elevation axes, select the area through a two-dimensional rough direction finding operation, and perform direction finding by correlation operation in the selected area. In addition, combination azimuth and combination elevation phase differences that are robust against phase delay distortion were used in two-dimensional rough direction operations. This method overcame nonlinear phase transfer characteristics and minimized the increase in error as the incidence angle increased. Performance tests confirmed that the proposed algorithm achieved high accuracy two-dimensional direction finding in a wideband (H/I/J band) system with a measurement error of 1 degree or less in the detection range, even in the presence of nonlinear characteristics of radome/antenna.