喷嘴外部几何形状对尖叫音调发射的影响

IF 1.2 4区 工程技术 Q3 ACOUSTICS International Journal of Aeroacoustics Pub Date : 2023-10-05 DOI:10.1177/1475472x231199185
David Morata, Dimitri Papamoschou
{"title":"喷嘴外部几何形状对尖叫音调发射的影响","authors":"David Morata, Dimitri Papamoschou","doi":"10.1177/1475472x231199185","DOIUrl":null,"url":null,"abstract":"The effect of external nozzle geometry on the emission of screech tones was studied experimentally. Four conical reflector surfaces, with half-angles ranging from 60° to 90°, were installed around the exit of a round convergent nozzle. The investigation focused on two closely spaced fully-expanded Mach numbers, M j = 1.32 and 1.34. The acoustic far-field was surveyed by a microphone phased array that included a continuously-scanning microphone, the latter enabling high spatial resolution. The isolated jets contained well-known screech mode B and its harmonics. Addition of the reflectors caused significant changes in the modal emission pattern, with tones traditionally linked to mode C occurring at M j = 1.34 but not at M j = 1.32. Tonal components associated with new modes E and F emerge at both Mach numbers when the cone half-angle is 60° or 70°. The noise source distribution generally elongates with decreasing cone angle. Some modes show clear scattering from the reflectors, while others do not. The study underscores the complexity that initial conditions can impart on the modal structure of screech and demonstrates the capability of the continuous-scan beamforming technique in resolving fine features of the source.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of nozzle external geometry on the emission of screech tones\",\"authors\":\"David Morata, Dimitri Papamoschou\",\"doi\":\"10.1177/1475472x231199185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of external nozzle geometry on the emission of screech tones was studied experimentally. Four conical reflector surfaces, with half-angles ranging from 60° to 90°, were installed around the exit of a round convergent nozzle. The investigation focused on two closely spaced fully-expanded Mach numbers, M j = 1.32 and 1.34. The acoustic far-field was surveyed by a microphone phased array that included a continuously-scanning microphone, the latter enabling high spatial resolution. The isolated jets contained well-known screech mode B and its harmonics. Addition of the reflectors caused significant changes in the modal emission pattern, with tones traditionally linked to mode C occurring at M j = 1.34 but not at M j = 1.32. Tonal components associated with new modes E and F emerge at both Mach numbers when the cone half-angle is 60° or 70°. The noise source distribution generally elongates with decreasing cone angle. Some modes show clear scattering from the reflectors, while others do not. The study underscores the complexity that initial conditions can impart on the modal structure of screech and demonstrates the capability of the continuous-scan beamforming technique in resolving fine features of the source.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472x231199185\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1475472x231199185","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

实验研究了外喷嘴几何形状对噪声发射的影响。在圆形会聚喷嘴出口处安装了四个半角为60°~ 90°的锥形反射面。研究集中在两个紧密间隔的完全展开马赫数M j = 1.32和1.34上。声学远场由麦克风相控阵测量,该相控阵包括一个连续扫描麦克风,后者具有高空间分辨率。这些孤立的喷流包含了众所周知的尖叫模式B及其谐波。反射器的增加引起了模态发射模式的显著变化,传统上与模态C相关的音调出现在mj = 1.34,而不是在mj = 1.32。当锥半角为60°或70°时,在两种马赫数下均出现与新模态E和F相关的音调分量。噪声源的分布一般随锥角的减小而拉长。有些模式显示出来自反射器的清晰散射,而其他模式则没有。该研究强调了初始条件对尖叫模态结构的复杂性,并证明了连续扫描波束形成技术在解决源的精细特征方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of nozzle external geometry on the emission of screech tones
The effect of external nozzle geometry on the emission of screech tones was studied experimentally. Four conical reflector surfaces, with half-angles ranging from 60° to 90°, were installed around the exit of a round convergent nozzle. The investigation focused on two closely spaced fully-expanded Mach numbers, M j = 1.32 and 1.34. The acoustic far-field was surveyed by a microphone phased array that included a continuously-scanning microphone, the latter enabling high spatial resolution. The isolated jets contained well-known screech mode B and its harmonics. Addition of the reflectors caused significant changes in the modal emission pattern, with tones traditionally linked to mode C occurring at M j = 1.34 but not at M j = 1.32. Tonal components associated with new modes E and F emerge at both Mach numbers when the cone half-angle is 60° or 70°. The noise source distribution generally elongates with decreasing cone angle. Some modes show clear scattering from the reflectors, while others do not. The study underscores the complexity that initial conditions can impart on the modal structure of screech and demonstrates the capability of the continuous-scan beamforming technique in resolving fine features of the source.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
期刊最新文献
Precise acoustic drone localization and tracking via drone noise: Steered response power - phase transform around harmonics Aerodynamic and aeroacoustic characteristics of rocket sled under strong ground effect Prediction of the aerodynamic noise of an airfoil via the hybrid methods of aeroacoustics Aeroacoustic source localization using the microphone array method with application to wind turbine noise Christopher Tam: Brief history and accomplishments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1