Yating Dong, Haile Ma, ling Sun, ronghai He, xiaofei Ye, bingcheng Gan
{"title":"He-Ne激光与脉冲光突变菌丝体菌丝生长相关候选基因的转录组对比分析","authors":"Yating Dong, Haile Ma, ling Sun, ronghai He, xiaofei Ye, bingcheng Gan","doi":"10.1615/intjmedmushrooms.2023051538","DOIUrl":null,"url":null,"abstract":"A mutant Phellinus igniarius JQ9 with higher mycelial production was screened out by He-Ne laser with pulsed light irradiation, the mechanism underlying the higher mycelial production is still unknow. This study aims to obtain a comprehensive transcriptome assembly during the Ph. igniarius liquid fermentation and characterize the key genes associated with the mycelial growth and metabolism in Ph. igniarius JQ9. Our transcriptome data of Ph. iniarius JQ9 and the wild strain were obtained with the Illumina platform comparative transcriptome sequencing technology. The results showed that among all the 346 differentially expressed genes (DEGs), 245 were up-regulated and 101 were down-regulated. Candidate genes encoding endoglucanase, beta-glucosidase, cellulose 1,4-beta-cellobiosidase, glycoside hydrolase family 61 protein, were proposed to participate in the carbohydrate utilization from KEGG enrichment of the starch and sucrose metabolism pathways were up-regulated in Ph. igniarius JQ9. In addition, three candidate genes encoding the laccase and another two candidate genes related with the cell growth were higher expressed in Ph. igniarius JQ9 than in the wild type of strain (CK). Analysis of these data revealed that increased these related carbohydrate metabolism candidate genes underlying one crucial way may cause the higher mycelia production.","PeriodicalId":94323,"journal":{"name":"International journal of medicinal mushrooms","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Transcriptome Analysis of Candidate Genes Associated with Mycelia Growth from a He-Ne Laser with Pulsed Light Mutant of Phellinus igniarius (Agaricomycetes)\",\"authors\":\"Yating Dong, Haile Ma, ling Sun, ronghai He, xiaofei Ye, bingcheng Gan\",\"doi\":\"10.1615/intjmedmushrooms.2023051538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mutant Phellinus igniarius JQ9 with higher mycelial production was screened out by He-Ne laser with pulsed light irradiation, the mechanism underlying the higher mycelial production is still unknow. This study aims to obtain a comprehensive transcriptome assembly during the Ph. igniarius liquid fermentation and characterize the key genes associated with the mycelial growth and metabolism in Ph. igniarius JQ9. Our transcriptome data of Ph. iniarius JQ9 and the wild strain were obtained with the Illumina platform comparative transcriptome sequencing technology. The results showed that among all the 346 differentially expressed genes (DEGs), 245 were up-regulated and 101 were down-regulated. Candidate genes encoding endoglucanase, beta-glucosidase, cellulose 1,4-beta-cellobiosidase, glycoside hydrolase family 61 protein, were proposed to participate in the carbohydrate utilization from KEGG enrichment of the starch and sucrose metabolism pathways were up-regulated in Ph. igniarius JQ9. In addition, three candidate genes encoding the laccase and another two candidate genes related with the cell growth were higher expressed in Ph. igniarius JQ9 than in the wild type of strain (CK). Analysis of these data revealed that increased these related carbohydrate metabolism candidate genes underlying one crucial way may cause the higher mycelia production.\",\"PeriodicalId\":94323,\"journal\":{\"name\":\"International journal of medicinal mushrooms\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of medicinal mushrooms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/intjmedmushrooms.2023051538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medicinal mushrooms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/intjmedmushrooms.2023051538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Transcriptome Analysis of Candidate Genes Associated with Mycelia Growth from a He-Ne Laser with Pulsed Light Mutant of Phellinus igniarius (Agaricomycetes)
A mutant Phellinus igniarius JQ9 with higher mycelial production was screened out by He-Ne laser with pulsed light irradiation, the mechanism underlying the higher mycelial production is still unknow. This study aims to obtain a comprehensive transcriptome assembly during the Ph. igniarius liquid fermentation and characterize the key genes associated with the mycelial growth and metabolism in Ph. igniarius JQ9. Our transcriptome data of Ph. iniarius JQ9 and the wild strain were obtained with the Illumina platform comparative transcriptome sequencing technology. The results showed that among all the 346 differentially expressed genes (DEGs), 245 were up-regulated and 101 were down-regulated. Candidate genes encoding endoglucanase, beta-glucosidase, cellulose 1,4-beta-cellobiosidase, glycoside hydrolase family 61 protein, were proposed to participate in the carbohydrate utilization from KEGG enrichment of the starch and sucrose metabolism pathways were up-regulated in Ph. igniarius JQ9. In addition, three candidate genes encoding the laccase and another two candidate genes related with the cell growth were higher expressed in Ph. igniarius JQ9 than in the wild type of strain (CK). Analysis of these data revealed that increased these related carbohydrate metabolism candidate genes underlying one crucial way may cause the higher mycelia production.