{"title":"用于植入式医疗设备的压电能量收集的最新进展","authors":"B Upendra, B Panigrahi, K Singh, GR Sabareesh","doi":"10.1177/1045389x231200144","DOIUrl":null,"url":null,"abstract":"Biomedical implantable devices like deep brain stimulators, implantable cardioverter-defibrillators and cardiac pacemakers are essential for treating the human heart and brain-related diseases. In the past few decades, a considerable amount of research has focused on improving bio-implant technologies. Conventional bio implant devices consist of an external generator like a battery to power the system, which requires replacement after a particular time. Therefore, in recent years, self-powered implants with various energy harvesting techniques have been proposed to avoid frequent surgery for battery replacement and to miniaturise the implant systems. However, the research communities have yet to explore all the limitations and possibilities of improvement on such energy-scavenging technologies, especially when the application is in vivo. Several aspects of recent developments in energy harvesting technologies feasible for biomedical implantable devices are reported systematically. A detailed review of piezoelectric energy harvester mechanism and miniaturisation, electric output and power management and biocompatibility of an energy harvester for implantable medical devices in vitro and in vivo environments. Furthermore, the piezoelectric energy harvester’s durability, packaging material, connection and evaluation criteria are discussed.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"29 2","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in piezoelectric energy harvesting for implantable medical devices\",\"authors\":\"B Upendra, B Panigrahi, K Singh, GR Sabareesh\",\"doi\":\"10.1177/1045389x231200144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomedical implantable devices like deep brain stimulators, implantable cardioverter-defibrillators and cardiac pacemakers are essential for treating the human heart and brain-related diseases. In the past few decades, a considerable amount of research has focused on improving bio-implant technologies. Conventional bio implant devices consist of an external generator like a battery to power the system, which requires replacement after a particular time. Therefore, in recent years, self-powered implants with various energy harvesting techniques have been proposed to avoid frequent surgery for battery replacement and to miniaturise the implant systems. However, the research communities have yet to explore all the limitations and possibilities of improvement on such energy-scavenging technologies, especially when the application is in vivo. Several aspects of recent developments in energy harvesting technologies feasible for biomedical implantable devices are reported systematically. A detailed review of piezoelectric energy harvester mechanism and miniaturisation, electric output and power management and biocompatibility of an energy harvester for implantable medical devices in vitro and in vivo environments. Furthermore, the piezoelectric energy harvester’s durability, packaging material, connection and evaluation criteria are discussed.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"29 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x231200144\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1045389x231200144","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent advancements in piezoelectric energy harvesting for implantable medical devices
Biomedical implantable devices like deep brain stimulators, implantable cardioverter-defibrillators and cardiac pacemakers are essential for treating the human heart and brain-related diseases. In the past few decades, a considerable amount of research has focused on improving bio-implant technologies. Conventional bio implant devices consist of an external generator like a battery to power the system, which requires replacement after a particular time. Therefore, in recent years, self-powered implants with various energy harvesting techniques have been proposed to avoid frequent surgery for battery replacement and to miniaturise the implant systems. However, the research communities have yet to explore all the limitations and possibilities of improvement on such energy-scavenging technologies, especially when the application is in vivo. Several aspects of recent developments in energy harvesting technologies feasible for biomedical implantable devices are reported systematically. A detailed review of piezoelectric energy harvester mechanism and miniaturisation, electric output and power management and biocompatibility of an energy harvester for implantable medical devices in vitro and in vivo environments. Furthermore, the piezoelectric energy harvester’s durability, packaging material, connection and evaluation criteria are discussed.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.