{"title":"基础决策树,k近邻,朴素贝叶斯,神经网络,随机森林","authors":"Muhammad Faozan Mulad Khalik, Fatchul Arifin","doi":"10.26418/jp.v9i2.67492","DOIUrl":null,"url":null,"abstract":"Penelitian ini bertujuan untuk mendapatkan klasifikasi indeks kedalaman kemiskinan dengan metode terbaik untuk kabupaten/kota di Provinsi Sulawesi Selatan dengan membandingkan metode Decision Tree, K-Nearest Neighbor, Naïve Bayes, Neural Network, dan Random Forest. Penelitian ini menggunakan metode kuantitatif dengan menggunakan data sekunder yang diperoleh dari situs resmi Badan Pusat Statistik Provinsi Sulawesi Selatan. Pada penelitian ini digunakan 168 data latih yang bersumber dari data tahun 2014 sampai dengan data tahun 2021, kemudian untuk data uji yang digunakan yaitu 24 data yang bersumber dari data tahun 2022. Hasil dari penelitian ini menunjukkan bahwa metode K-NN dan Neural Network memperoleh performa paling tinggi dibandingkan dengan metode lain tingkat akurasi 79,17%, precission 85,71%, recall 80%. Namun pada penilaian parameter AUC, metode Neural Network lebih unggul dibandingkan metode K-NN dengan skor AUC 0,837. Sehingga dapat disimpulkan bahwa metode Neural Network ini dapat dijadikan sebagai metode untuk melakukan klasifikasi indeks kedalaman kemiskinan kabupaten/kota Provinsi Sulawesi Selatan.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klasifikasi Indeks Kedalaman Kemiskinan Provinsi Sulawesi Selatan Berbasis Decision Tree, K-Nearest Neighbor, Naive Bayes, Neural Network, dan Random Forest\",\"authors\":\"Muhammad Faozan Mulad Khalik, Fatchul Arifin\",\"doi\":\"10.26418/jp.v9i2.67492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penelitian ini bertujuan untuk mendapatkan klasifikasi indeks kedalaman kemiskinan dengan metode terbaik untuk kabupaten/kota di Provinsi Sulawesi Selatan dengan membandingkan metode Decision Tree, K-Nearest Neighbor, Naïve Bayes, Neural Network, dan Random Forest. Penelitian ini menggunakan metode kuantitatif dengan menggunakan data sekunder yang diperoleh dari situs resmi Badan Pusat Statistik Provinsi Sulawesi Selatan. Pada penelitian ini digunakan 168 data latih yang bersumber dari data tahun 2014 sampai dengan data tahun 2021, kemudian untuk data uji yang digunakan yaitu 24 data yang bersumber dari data tahun 2022. Hasil dari penelitian ini menunjukkan bahwa metode K-NN dan Neural Network memperoleh performa paling tinggi dibandingkan dengan metode lain tingkat akurasi 79,17%, precission 85,71%, recall 80%. Namun pada penilaian parameter AUC, metode Neural Network lebih unggul dibandingkan metode K-NN dengan skor AUC 0,837. Sehingga dapat disimpulkan bahwa metode Neural Network ini dapat dijadikan sebagai metode untuk melakukan klasifikasi indeks kedalaman kemiskinan kabupaten/kota Provinsi Sulawesi Selatan.\",\"PeriodicalId\":31793,\"journal\":{\"name\":\"JEPIN Jurnal Edukasi dan Penelitian Informatika\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JEPIN Jurnal Edukasi dan Penelitian Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/jp.v9i2.67492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v9i2.67492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Klasifikasi Indeks Kedalaman Kemiskinan Provinsi Sulawesi Selatan Berbasis Decision Tree, K-Nearest Neighbor, Naive Bayes, Neural Network, dan Random Forest
Penelitian ini bertujuan untuk mendapatkan klasifikasi indeks kedalaman kemiskinan dengan metode terbaik untuk kabupaten/kota di Provinsi Sulawesi Selatan dengan membandingkan metode Decision Tree, K-Nearest Neighbor, Naïve Bayes, Neural Network, dan Random Forest. Penelitian ini menggunakan metode kuantitatif dengan menggunakan data sekunder yang diperoleh dari situs resmi Badan Pusat Statistik Provinsi Sulawesi Selatan. Pada penelitian ini digunakan 168 data latih yang bersumber dari data tahun 2014 sampai dengan data tahun 2021, kemudian untuk data uji yang digunakan yaitu 24 data yang bersumber dari data tahun 2022. Hasil dari penelitian ini menunjukkan bahwa metode K-NN dan Neural Network memperoleh performa paling tinggi dibandingkan dengan metode lain tingkat akurasi 79,17%, precission 85,71%, recall 80%. Namun pada penilaian parameter AUC, metode Neural Network lebih unggul dibandingkan metode K-NN dengan skor AUC 0,837. Sehingga dapat disimpulkan bahwa metode Neural Network ini dapat dijadikan sebagai metode untuk melakukan klasifikasi indeks kedalaman kemiskinan kabupaten/kota Provinsi Sulawesi Selatan.