翼型位点的平衡选择与全基因组多样性和基因流动模式的重大转变有关

María Ángeles Rodríguez de Cara, Paul Jay, Quentin Rougemont, Mathieu Chouteau, Annabel Whibley, Barbara Huber, Florence Piron-Prunier, Renato Rogner Ramos, André V. L. Freitas, Camilo Salazar, Karina Lucas Silva-Brandão, Tatiana Teixeira Torres, Mathieu Joron
{"title":"翼型位点的平衡选择与全基因组多样性和基因流动模式的重大转变有关","authors":"María Ángeles Rodríguez de Cara, Paul Jay, Quentin Rougemont, Mathieu Chouteau, Annabel Whibley, Barbara Huber, Florence Piron-Prunier, Renato Rogner Ramos, André V. L. Freitas, Camilo Salazar, Karina Lucas Silva-Brandão, Tatiana Teixeira Torres, Mathieu Joron","doi":"10.24072/pcjournal.298","DOIUrl":null,"url":null,"abstract":"Selection shapes genetic diversity around target mutations, yet little is known about how selection on specific loci affects the genetic trajectories of populations, including their genome-wide patterns of diversity and demographic responses. Here we study the patterns of genetic variation and geographic structure in a neotropical butterfly, Heliconius numata, and its closely related allies in the so-called melpomene-silvaniform clade. H. numata is known to have evolved an inversion supergene which controls variation in wing patterns involved in mimicry associations with distinct groups of co-mimics whereas it is associated to disassortative mate preferences and heterozygote advantage at this locus. We contrasted patterns of genetic diversity and structure 1) among extant polymorphic and monomorphic populations of H. numata, 2) between H. numata and its close relatives, and 3) between ancestral lineages. We show that H. numata populations which carry the inversions as a balanced polymorphism show markedly distinct patterns of diversity compared to all other taxa. They show the highest genetic diversity and effective population size estimates in the entire clade, as well as a low level of geographic structure and isolation by distance across the entire Amazon basin. By contrast, monomorphic populations of H. numata as well as its sister species and their ancestral lineages all show lower effective population sizes and genetic diversity, and higher levels of geographical structure across the continent. One hypothesis is that the large effective population size of polymorphic populations could be caused by the shift to a regime of balancing selection due to the genetic load and disassortative preferences associated with inversions. Testing this hypothesis with forward simulations supported the observation of increased diversity in populations with the supergene. Our results are consistent with the hypothesis that the formation of the supergene triggered a change in gene flow, causing a general increase in genetic diversity and the homogenisation of genomes at the continental scale.","PeriodicalId":74413,"journal":{"name":"Peer community journal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing selection at a wing pattern locus is associated with major shifts in genome-wide patterns of diversity and gene flow\",\"authors\":\"María Ángeles Rodríguez de Cara, Paul Jay, Quentin Rougemont, Mathieu Chouteau, Annabel Whibley, Barbara Huber, Florence Piron-Prunier, Renato Rogner Ramos, André V. L. Freitas, Camilo Salazar, Karina Lucas Silva-Brandão, Tatiana Teixeira Torres, Mathieu Joron\",\"doi\":\"10.24072/pcjournal.298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selection shapes genetic diversity around target mutations, yet little is known about how selection on specific loci affects the genetic trajectories of populations, including their genome-wide patterns of diversity and demographic responses. Here we study the patterns of genetic variation and geographic structure in a neotropical butterfly, Heliconius numata, and its closely related allies in the so-called melpomene-silvaniform clade. H. numata is known to have evolved an inversion supergene which controls variation in wing patterns involved in mimicry associations with distinct groups of co-mimics whereas it is associated to disassortative mate preferences and heterozygote advantage at this locus. We contrasted patterns of genetic diversity and structure 1) among extant polymorphic and monomorphic populations of H. numata, 2) between H. numata and its close relatives, and 3) between ancestral lineages. We show that H. numata populations which carry the inversions as a balanced polymorphism show markedly distinct patterns of diversity compared to all other taxa. They show the highest genetic diversity and effective population size estimates in the entire clade, as well as a low level of geographic structure and isolation by distance across the entire Amazon basin. By contrast, monomorphic populations of H. numata as well as its sister species and their ancestral lineages all show lower effective population sizes and genetic diversity, and higher levels of geographical structure across the continent. One hypothesis is that the large effective population size of polymorphic populations could be caused by the shift to a regime of balancing selection due to the genetic load and disassortative preferences associated with inversions. Testing this hypothesis with forward simulations supported the observation of increased diversity in populations with the supergene. Our results are consistent with the hypothesis that the formation of the supergene triggered a change in gene flow, causing a general increase in genetic diversity and the homogenisation of genomes at the continental scale.\",\"PeriodicalId\":74413,\"journal\":{\"name\":\"Peer community journal\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer community journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24072/pcjournal.298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer community journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24072/pcjournal.298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

选择塑造了目标突变周围的遗传多样性,但对于特定位点的选择如何影响种群的遗传轨迹,包括它们的全基因组多样性模式和人口统计学反应,我们知之甚少。本文研究了新热带蝴蝶Heliconius numata及其近亲melpomene-silvaniform分支的遗传变异模式和地理结构。已知麻蝇已经进化出一种倒置的表面基因,该基因控制翅膀模式的变化,涉及与不同的共模仿者群体的模仿关联,而它与该位点的异种交配偏好和杂合子优势有关。本研究对比了不同种群间的遗传多样性和结构格局,包括:1)不同种群间的遗传多样性和结构格局;2)不同种群间的遗传多样性和结构格局;3)不同祖先间的遗传多样性和结构格局。结果表明,与其他类群相比,具有倒位多态性的麻人种群表现出明显不同的多样性模式。它们在整个进化支系中表现出最高的遗传多样性和有效的种群大小估计,以及低水平的地理结构和整个亚马逊盆地的距离隔离。相比之下,单态居群及其姊妹种及其祖先谱系均表现出较低的有效种群规模和遗传多样性,而在整个大陆的地理结构水平较高。一种假设是,多态种群的有效种群规模大,可能是由于遗传负荷和与反转相关的非分类偏好导致的平衡选择制度的转变造成的。用正向模拟验证这一假设,支持了具有超基因的种群多样性增加的观察结果。我们的结果与假设一致,即超基因的形成引发了基因流动的变化,导致遗传多样性的普遍增加和基因组在大陆尺度上的同质化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Balancing selection at a wing pattern locus is associated with major shifts in genome-wide patterns of diversity and gene flow
Selection shapes genetic diversity around target mutations, yet little is known about how selection on specific loci affects the genetic trajectories of populations, including their genome-wide patterns of diversity and demographic responses. Here we study the patterns of genetic variation and geographic structure in a neotropical butterfly, Heliconius numata, and its closely related allies in the so-called melpomene-silvaniform clade. H. numata is known to have evolved an inversion supergene which controls variation in wing patterns involved in mimicry associations with distinct groups of co-mimics whereas it is associated to disassortative mate preferences and heterozygote advantage at this locus. We contrasted patterns of genetic diversity and structure 1) among extant polymorphic and monomorphic populations of H. numata, 2) between H. numata and its close relatives, and 3) between ancestral lineages. We show that H. numata populations which carry the inversions as a balanced polymorphism show markedly distinct patterns of diversity compared to all other taxa. They show the highest genetic diversity and effective population size estimates in the entire clade, as well as a low level of geographic structure and isolation by distance across the entire Amazon basin. By contrast, monomorphic populations of H. numata as well as its sister species and their ancestral lineages all show lower effective population sizes and genetic diversity, and higher levels of geographical structure across the continent. One hypothesis is that the large effective population size of polymorphic populations could be caused by the shift to a regime of balancing selection due to the genetic load and disassortative preferences associated with inversions. Testing this hypothesis with forward simulations supported the observation of increased diversity in populations with the supergene. Our results are consistent with the hypothesis that the formation of the supergene triggered a change in gene flow, causing a general increase in genetic diversity and the homogenisation of genomes at the continental scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High quality genome assembly and annotation (v1) of the eukaryotic terrestrial microalga Coccomyxa viridis SAG 216-4 Ecotoxicity of lanthanides to Daphnia magna: insights from elemental behavior and speciation in a standardized test medium T7 DNA polymerase treatment improves quantitative sequencing of both double-stranded and single-stranded DNA viruses Differences in specificity, development time and virulence between two acanthocephalan parasites, infecting two cryptic species of Gammarus fossarum Multiproxy analysis exploring patterns of diet and disease in dental calculus and skeletal remains from a 19th century Dutch population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1