{"title":"金属超分子聚合物与电致变色器件制备研究进展","authors":"Masayoshi Higuchi","doi":"10.5059/yukigoseikyokaishi.81.1089","DOIUrl":null,"url":null,"abstract":"This paper introduces our recent research on metallo-supramolecular polymers (MSPs) and the electrochromic (EC) device fabrication, including (1) control of metal sequence in one-dimensional (1D) MSPs, (2) design of two-dimensional (2D) MSPs, (3) three-dimensional (3D) hyperbranched MSPs, (4) EC devices (ECDs) with MSPs and (5) our trial for ECD applications. MSPs are a kind of coordination polymers and obtained by complexation of metal ions with multitopic organic ligands. MSPs show EC properties in the film state, activated by the electrochemical redox of the metal ions. The EC changes are caused by the reversible appearance and disappearance of the metal-to-ligand charge transfer (MLCT) absorption in the metal complex moieties of MSPs. ECDs with MSPs have great potential for the future’s smart window applications and spreading.","PeriodicalId":17123,"journal":{"name":"Journal of Synthetic Organic Chemistry Japan","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress on Metallo-Supramolecular Polymers and the Electrochromic Devices Fabrication\",\"authors\":\"Masayoshi Higuchi\",\"doi\":\"10.5059/yukigoseikyokaishi.81.1089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces our recent research on metallo-supramolecular polymers (MSPs) and the electrochromic (EC) device fabrication, including (1) control of metal sequence in one-dimensional (1D) MSPs, (2) design of two-dimensional (2D) MSPs, (3) three-dimensional (3D) hyperbranched MSPs, (4) EC devices (ECDs) with MSPs and (5) our trial for ECD applications. MSPs are a kind of coordination polymers and obtained by complexation of metal ions with multitopic organic ligands. MSPs show EC properties in the film state, activated by the electrochemical redox of the metal ions. The EC changes are caused by the reversible appearance and disappearance of the metal-to-ligand charge transfer (MLCT) absorption in the metal complex moieties of MSPs. ECDs with MSPs have great potential for the future’s smart window applications and spreading.\",\"PeriodicalId\":17123,\"journal\":{\"name\":\"Journal of Synthetic Organic Chemistry Japan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synthetic Organic Chemistry Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5059/yukigoseikyokaishi.81.1089\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synthetic Organic Chemistry Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5059/yukigoseikyokaishi.81.1089","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Recent Progress on Metallo-Supramolecular Polymers and the Electrochromic Devices Fabrication
This paper introduces our recent research on metallo-supramolecular polymers (MSPs) and the electrochromic (EC) device fabrication, including (1) control of metal sequence in one-dimensional (1D) MSPs, (2) design of two-dimensional (2D) MSPs, (3) three-dimensional (3D) hyperbranched MSPs, (4) EC devices (ECDs) with MSPs and (5) our trial for ECD applications. MSPs are a kind of coordination polymers and obtained by complexation of metal ions with multitopic organic ligands. MSPs show EC properties in the film state, activated by the electrochemical redox of the metal ions. The EC changes are caused by the reversible appearance and disappearance of the metal-to-ligand charge transfer (MLCT) absorption in the metal complex moieties of MSPs. ECDs with MSPs have great potential for the future’s smart window applications and spreading.