ePix100探测器在欧洲自由电子激光器的校准程序和数据校正

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Journal of Instrumentation Pub Date : 2023-11-01 DOI:10.1088/1748-0221/18/11/c11008
N. Duarte, K. Ahmed, M. Cascella, S. Hauf, T. Preston, R. Shayduk, M. Turcato, M. Ramilli
{"title":"ePix100探测器在欧洲自由电子激光器的校准程序和数据校正","authors":"N. Duarte, K. Ahmed, M. Cascella, S. Hauf, T. Preston, R. Shayduk, M. Turcato, M. Ramilli","doi":"10.1088/1748-0221/18/11/c11008","DOIUrl":null,"url":null,"abstract":"Abstract The European XFEL is a research facility that delivers extremely bright and short coherent X-ray pulses of tunable energy at MHz repetition rate, providing unprecedented capabilities to conduct scientific research across multiple domains. Among the suite of deployed detectors, several ePix100 modules, belonging to the family of ePix detectors developed at SLAC, are used. These charge-integrating hybrid pixel detectors offer single-photon resolution for energies above 2 keV and a dynamic range of 100 photons at 8 keV. Their low noise, small pixel size, compact dimensions, maneuverability and vacuum compatibility make them an attractive choice for some of the hard X-ray instruments at the European XFEL for imaging, spectroscopy, and scattering experiments. The European XFEL is committed to providing users with completely corrected detector data. To achieve this goal, periodic calibration procedures are conducted to generate calibration constants that allow the conversion of raw detector output into physically meaningful information through a series of successive data correction steps. In this work, an overview of the ePix100 calibration procedures and correction algorithms will be provided, with a focus on particularly relevant processes for this detector, such as common mode noise and charge sharing correction.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"51 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration procedures and data correction of ePix100 detectors at the European XFEL\",\"authors\":\"N. Duarte, K. Ahmed, M. Cascella, S. Hauf, T. Preston, R. Shayduk, M. Turcato, M. Ramilli\",\"doi\":\"10.1088/1748-0221/18/11/c11008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The European XFEL is a research facility that delivers extremely bright and short coherent X-ray pulses of tunable energy at MHz repetition rate, providing unprecedented capabilities to conduct scientific research across multiple domains. Among the suite of deployed detectors, several ePix100 modules, belonging to the family of ePix detectors developed at SLAC, are used. These charge-integrating hybrid pixel detectors offer single-photon resolution for energies above 2 keV and a dynamic range of 100 photons at 8 keV. Their low noise, small pixel size, compact dimensions, maneuverability and vacuum compatibility make them an attractive choice for some of the hard X-ray instruments at the European XFEL for imaging, spectroscopy, and scattering experiments. The European XFEL is committed to providing users with completely corrected detector data. To achieve this goal, periodic calibration procedures are conducted to generate calibration constants that allow the conversion of raw detector output into physically meaningful information through a series of successive data correction steps. In this work, an overview of the ePix100 calibration procedures and correction algorithms will be provided, with a focus on particularly relevant processes for this detector, such as common mode noise and charge sharing correction.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/18/11/c11008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/11/c11008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

欧洲的XFEL是一种研究设备,可以以MHz重复率提供极亮且短的可调谐能量相干x射线脉冲,为跨多个领域进行科学研究提供前所未有的能力。在部署的探测器套件中,使用了几个ePix100模块,属于SLAC开发的ePix100探测器系列。这些电荷积分混合像素探测器提供了2 keV以上能量的单光子分辨率和8 keV时100光子的动态范围。它们的低噪声,小像素尺寸,紧凑的尺寸,可操作性和真空兼容性使它们成为欧洲XFEL的一些硬x射线仪器的有吸引力的选择,用于成像,光谱和散射实验。欧洲XFEL致力于为用户提供完全正确的探测器数据。为了实现这一目标,进行周期性校准程序以生成校准常数,从而允许通过一系列连续的数据校正步骤将原始探测器输出转换为物理上有意义的信息。在这项工作中,将提供ePix100校准程序和校正算法的概述,重点介绍该探测器的特别相关过程,例如共模噪声和电荷共享校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibration procedures and data correction of ePix100 detectors at the European XFEL
Abstract The European XFEL is a research facility that delivers extremely bright and short coherent X-ray pulses of tunable energy at MHz repetition rate, providing unprecedented capabilities to conduct scientific research across multiple domains. Among the suite of deployed detectors, several ePix100 modules, belonging to the family of ePix detectors developed at SLAC, are used. These charge-integrating hybrid pixel detectors offer single-photon resolution for energies above 2 keV and a dynamic range of 100 photons at 8 keV. Their low noise, small pixel size, compact dimensions, maneuverability and vacuum compatibility make them an attractive choice for some of the hard X-ray instruments at the European XFEL for imaging, spectroscopy, and scattering experiments. The European XFEL is committed to providing users with completely corrected detector data. To achieve this goal, periodic calibration procedures are conducted to generate calibration constants that allow the conversion of raw detector output into physically meaningful information through a series of successive data correction steps. In this work, an overview of the ePix100 calibration procedures and correction algorithms will be provided, with a focus on particularly relevant processes for this detector, such as common mode noise and charge sharing correction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Instrumentation
Journal of Instrumentation 工程技术-仪器仪表
CiteScore
2.40
自引率
15.40%
发文量
827
审稿时长
7.5 months
期刊介绍: Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include. -Accelerators: concepts, modelling, simulations and sources- Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons- Detector physics: concepts, processes, methods, modelling and simulations- Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics- Instrumentation and methods for plasma research- Methods and apparatus for astronomy and astrophysics- Detectors, methods and apparatus for biomedical applications, life sciences and material research- Instrumentation and techniques for medical imaging, diagnostics and therapy- Instrumentation and techniques for dosimetry, monitoring and radiation damage- Detectors, instrumentation and methods for non-destructive tests (NDT)- Detector readout concepts, electronics and data acquisition methods- Algorithms, software and data reduction methods- Materials and associated technologies, etc.- Engineering and technical issues. JINST also includes a section dedicated to technical reports and instrumentation theses.
期刊最新文献
High-speed readout system of X-ray CMOS image sensor for time domain astronomy Recent advances in combined Positron Emission Tomography and Magnetic Resonance Imaging Characterization of organic glass scintillator bars and their potential for a hybrid neutron/gamma ray imaging system for proton radiotherapy range verification Data analysis methods and applications of the eddy current diagnostic system in the Keda Torus eXperiment device Tracking a moving point source using triple gamma imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1