{"title":"用于医疗保健领域协作人工智能的联合机器学习","authors":"Melek Önen, Francesco Cremonesi, Marco Lorenzi","doi":"10.3917/ride.363.0095","DOIUrl":null,"url":null,"abstract":"L’apprentissage fédéré ou federated learning (FL) représente aujourd’hui un paradigme de travail essentiel pour renforcer la recherche en IA tout en garantissant la gouvernance et la confidentialité des données grâce à des applications d’apprentissage décentralisées. L’apprentissage fédéré permet à différents clients d’apprendre conjointement un modèle global sans partager leurs données respectives, et est donc particulièrement adapté aux applications d’IA contenant des données sensibles, comme dans le domaine de la santé. Néanmoins, l’utilisation de l’apprentissage fédéré dans le domaine médical en est actuellement à ses débuts, avec seulement une poignée d’applications pionnières démontrées dans des conditions réelles. L’un des aspects critiques de son application dans des conditions réelles concerne les aspects de sécurité et de sûreté. Des parties mal intentionnées peuvent intervenir pendant la procédure pour dégrader/modifier les performances des modèles ou récupérer des informations sur les données d’autres clients. Il existe actuellement une zone grise de menaces potentielles pour la vie privée associées au développement et à l’exploitation de méthodes complexes d’IA sur des données sensibles. Ces menaces apparaissent chaque fois que nous pouvons interférer avec les processus d’apprentissage ou d’exploitation du modèle, afin de recueillir plus d’informations sur les données utilisées pour générer un tel modèle. Dans ce travail, nous fournissons une vue d’ensemble des recherches et des défis actuels sur la sécurité et la sûreté de l’apprentissage fédéré, avec un accent particulier sur les applications de soins de santé.","PeriodicalId":39409,"journal":{"name":"Revue Internationale de Droit Economique","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apprentissage automatique fédéré pour l’IA collaborative dans le secteur de la santé\",\"authors\":\"Melek Önen, Francesco Cremonesi, Marco Lorenzi\",\"doi\":\"10.3917/ride.363.0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"L’apprentissage fédéré ou federated learning (FL) représente aujourd’hui un paradigme de travail essentiel pour renforcer la recherche en IA tout en garantissant la gouvernance et la confidentialité des données grâce à des applications d’apprentissage décentralisées. L’apprentissage fédéré permet à différents clients d’apprendre conjointement un modèle global sans partager leurs données respectives, et est donc particulièrement adapté aux applications d’IA contenant des données sensibles, comme dans le domaine de la santé. Néanmoins, l’utilisation de l’apprentissage fédéré dans le domaine médical en est actuellement à ses débuts, avec seulement une poignée d’applications pionnières démontrées dans des conditions réelles. L’un des aspects critiques de son application dans des conditions réelles concerne les aspects de sécurité et de sûreté. Des parties mal intentionnées peuvent intervenir pendant la procédure pour dégrader/modifier les performances des modèles ou récupérer des informations sur les données d’autres clients. Il existe actuellement une zone grise de menaces potentielles pour la vie privée associées au développement et à l’exploitation de méthodes complexes d’IA sur des données sensibles. Ces menaces apparaissent chaque fois que nous pouvons interférer avec les processus d’apprentissage ou d’exploitation du modèle, afin de recueillir plus d’informations sur les données utilisées pour générer un tel modèle. Dans ce travail, nous fournissons une vue d’ensemble des recherches et des défis actuels sur la sécurité et la sûreté de l’apprentissage fédéré, avec un accent particulier sur les applications de soins de santé.\",\"PeriodicalId\":39409,\"journal\":{\"name\":\"Revue Internationale de Droit Economique\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue Internationale de Droit Economique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3917/ride.363.0095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Internationale de Droit Economique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3917/ride.363.0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
Apprentissage automatique fédéré pour l’IA collaborative dans le secteur de la santé
L’apprentissage fédéré ou federated learning (FL) représente aujourd’hui un paradigme de travail essentiel pour renforcer la recherche en IA tout en garantissant la gouvernance et la confidentialité des données grâce à des applications d’apprentissage décentralisées. L’apprentissage fédéré permet à différents clients d’apprendre conjointement un modèle global sans partager leurs données respectives, et est donc particulièrement adapté aux applications d’IA contenant des données sensibles, comme dans le domaine de la santé. Néanmoins, l’utilisation de l’apprentissage fédéré dans le domaine médical en est actuellement à ses débuts, avec seulement une poignée d’applications pionnières démontrées dans des conditions réelles. L’un des aspects critiques de son application dans des conditions réelles concerne les aspects de sécurité et de sûreté. Des parties mal intentionnées peuvent intervenir pendant la procédure pour dégrader/modifier les performances des modèles ou récupérer des informations sur les données d’autres clients. Il existe actuellement une zone grise de menaces potentielles pour la vie privée associées au développement et à l’exploitation de méthodes complexes d’IA sur des données sensibles. Ces menaces apparaissent chaque fois que nous pouvons interférer avec les processus d’apprentissage ou d’exploitation du modèle, afin de recueillir plus d’informations sur les données utilisées pour générer un tel modèle. Dans ce travail, nous fournissons une vue d’ensemble des recherches et des défis actuels sur la sécurité et la sûreté de l’apprentissage fédéré, avec un accent particulier sur les applications de soins de santé.