Mirzakhmedov Mukhammadjon, K Kamalova Lola, S Ayubov Mirzakamol, T Normurodova Kunduz, A Ubaydullaeva Khurshida, T Buriev Zabardast, Y Abdurakhmonov Ibrokhim
{"title":"利用靶基因提高玉米抗旱性","authors":"Mirzakhmedov Mukhammadjon, K Kamalova Lola, S Ayubov Mirzakamol, T Normurodova Kunduz, A Ubaydullaeva Khurshida, T Buriev Zabardast, Y Abdurakhmonov Ibrokhim","doi":"10.14719/pst.2561","DOIUrl":null,"url":null,"abstract":"Among the most widely grown cereal crops is maize, which is a staple food for millions of people worldwide. It is primarily used for human consumption in various forms, animal feed, and industrial applications. In many countries like Mexico, Africa, and South America, it is the main source of calories in their daily diet, making it crucial for food security. Many nations worldwide are more at risk of drought as global warming continues to accelerate. One of the major hurdles to food production in the twenty-first century and a serious threat to our present and future food security is a water crisis. Crop failure due to water scarcity can put millions of lives at risk. Along with traditional breeding, transgenic approaches are an essential tool in modern plant breeding. They allow the introduction of beneficial genes from other organisms or within the same organism to improve plant characteristics. This review focuses on specific genes that are stably expressed and tested for drought tolerance in maize. Several genes have been identified as potential targets for improving drought tolerance in maize. Although mechanisms of target genes overlap to some extent, we attempted to divide the selected research articles according to the mechanism of the targeted gene into categories and reviewed them.","PeriodicalId":20236,"journal":{"name":"Plant Science Today","volume":"71 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Target genes utilized for drought tolerance enhancement in maize\",\"authors\":\"Mirzakhmedov Mukhammadjon, K Kamalova Lola, S Ayubov Mirzakamol, T Normurodova Kunduz, A Ubaydullaeva Khurshida, T Buriev Zabardast, Y Abdurakhmonov Ibrokhim\",\"doi\":\"10.14719/pst.2561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the most widely grown cereal crops is maize, which is a staple food for millions of people worldwide. It is primarily used for human consumption in various forms, animal feed, and industrial applications. In many countries like Mexico, Africa, and South America, it is the main source of calories in their daily diet, making it crucial for food security. Many nations worldwide are more at risk of drought as global warming continues to accelerate. One of the major hurdles to food production in the twenty-first century and a serious threat to our present and future food security is a water crisis. Crop failure due to water scarcity can put millions of lives at risk. Along with traditional breeding, transgenic approaches are an essential tool in modern plant breeding. They allow the introduction of beneficial genes from other organisms or within the same organism to improve plant characteristics. This review focuses on specific genes that are stably expressed and tested for drought tolerance in maize. Several genes have been identified as potential targets for improving drought tolerance in maize. Although mechanisms of target genes overlap to some extent, we attempted to divide the selected research articles according to the mechanism of the targeted gene into categories and reviewed them.\",\"PeriodicalId\":20236,\"journal\":{\"name\":\"Plant Science Today\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14719/pst.2561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14719/pst.2561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Target genes utilized for drought tolerance enhancement in maize
Among the most widely grown cereal crops is maize, which is a staple food for millions of people worldwide. It is primarily used for human consumption in various forms, animal feed, and industrial applications. In many countries like Mexico, Africa, and South America, it is the main source of calories in their daily diet, making it crucial for food security. Many nations worldwide are more at risk of drought as global warming continues to accelerate. One of the major hurdles to food production in the twenty-first century and a serious threat to our present and future food security is a water crisis. Crop failure due to water scarcity can put millions of lives at risk. Along with traditional breeding, transgenic approaches are an essential tool in modern plant breeding. They allow the introduction of beneficial genes from other organisms or within the same organism to improve plant characteristics. This review focuses on specific genes that are stably expressed and tested for drought tolerance in maize. Several genes have been identified as potential targets for improving drought tolerance in maize. Although mechanisms of target genes overlap to some extent, we attempted to divide the selected research articles according to the mechanism of the targeted gene into categories and reviewed them.