{"title":"PCa-Clf:利用机器学习将前列腺癌患者分为惰性和侵袭性肿瘤","authors":"Yashwanth Karthik Kumar Mamidi, Tarun Karthik Kumar Mamidi, Md Wasi Ul Kabir, Jiande Wu, Md Tamjidul Hoque, Chindo Hicks","doi":"10.3390/make5040066","DOIUrl":null,"url":null,"abstract":"A critical unmet medical need in prostate cancer (PCa) clinical management centers around distinguishing indolent from aggressive tumors. Traditionally, Gleason grading has been utilized for this purpose. However, tumor classification using Gleason Grade 7 is often ambiguous, as the clinical behavior of these tumors follows a variable clinical course. This study aimed to investigate the application of machine learning techniques (ML) to classify patients into indolent and aggressive PCas. We used gene expression data from The Cancer Genome Atlas and compared gene expression levels between indolent and aggressive tumors to identify features for developing and validating a range of ML and stacking algorithms. ML algorithms accurately distinguished indolent from aggressive PCas. With the accuracy of 96%, the stacking model was superior to individual ML algorithms when all samples with primary Gleason Grades 6 to 10 were used. Excluding samples with Gleason Grade 7 improved accuracy to 97%. This study shows that ML algorithms and stacking models are powerful approaches for the accurate classification of indolent versus aggressive PCas. Future implementation of this methodology may significantly impact clinical decision making and patient outcomes in the clinical management of prostate cancer.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"33 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PCa-Clf: A Classifier of Prostate Cancer Patients into Patients with Indolent and Aggressive Tumors Using Machine Learning\",\"authors\":\"Yashwanth Karthik Kumar Mamidi, Tarun Karthik Kumar Mamidi, Md Wasi Ul Kabir, Jiande Wu, Md Tamjidul Hoque, Chindo Hicks\",\"doi\":\"10.3390/make5040066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A critical unmet medical need in prostate cancer (PCa) clinical management centers around distinguishing indolent from aggressive tumors. Traditionally, Gleason grading has been utilized for this purpose. However, tumor classification using Gleason Grade 7 is often ambiguous, as the clinical behavior of these tumors follows a variable clinical course. This study aimed to investigate the application of machine learning techniques (ML) to classify patients into indolent and aggressive PCas. We used gene expression data from The Cancer Genome Atlas and compared gene expression levels between indolent and aggressive tumors to identify features for developing and validating a range of ML and stacking algorithms. ML algorithms accurately distinguished indolent from aggressive PCas. With the accuracy of 96%, the stacking model was superior to individual ML algorithms when all samples with primary Gleason Grades 6 to 10 were used. Excluding samples with Gleason Grade 7 improved accuracy to 97%. This study shows that ML algorithms and stacking models are powerful approaches for the accurate classification of indolent versus aggressive PCas. Future implementation of this methodology may significantly impact clinical decision making and patient outcomes in the clinical management of prostate cancer.\",\"PeriodicalId\":93033,\"journal\":{\"name\":\"Machine learning and knowledge extraction\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge extraction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/make5040066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5040066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
PCa-Clf: A Classifier of Prostate Cancer Patients into Patients with Indolent and Aggressive Tumors Using Machine Learning
A critical unmet medical need in prostate cancer (PCa) clinical management centers around distinguishing indolent from aggressive tumors. Traditionally, Gleason grading has been utilized for this purpose. However, tumor classification using Gleason Grade 7 is often ambiguous, as the clinical behavior of these tumors follows a variable clinical course. This study aimed to investigate the application of machine learning techniques (ML) to classify patients into indolent and aggressive PCas. We used gene expression data from The Cancer Genome Atlas and compared gene expression levels between indolent and aggressive tumors to identify features for developing and validating a range of ML and stacking algorithms. ML algorithms accurately distinguished indolent from aggressive PCas. With the accuracy of 96%, the stacking model was superior to individual ML algorithms when all samples with primary Gleason Grades 6 to 10 were used. Excluding samples with Gleason Grade 7 improved accuracy to 97%. This study shows that ML algorithms and stacking models are powerful approaches for the accurate classification of indolent versus aggressive PCas. Future implementation of this methodology may significantly impact clinical decision making and patient outcomes in the clinical management of prostate cancer.