化妆品中用作磨料的聚乙烯和微晶纤维素微珠的水生毒性

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Chemical and Biochemical Engineering Quarterly Pub Date : 2023-10-04 DOI:10.15255/cabeq.2023.2181
Martina Miloloža, Ula Rozman, D. Kučić Grgić, Gabriela Kalčikova
{"title":"化妆品中用作磨料的聚乙烯和微晶纤维素微珠的水生毒性","authors":"Martina Miloloža, Ula Rozman, D. Kučić Grgić, Gabriela Kalčikova","doi":"10.15255/cabeq.2023.2181","DOIUrl":null,"url":null,"abstract":"Microplastics have been part of personal care products for years, but due to micro - plastic pollution, many companies have replaced microplastics with natural particles, such as microcrystalline cellulose. Although natural particles are considered more envi - ronmentally friendly, their ecotoxicological profile is unknown. In this context, the aim of this study was to compare the ecotoxicity of polyethylene and microcrystalline cellu - lose microbeads, both extracted from a cosmetic product. The effects of the two types of particles on the aquatic macrophyte Lemna minor and the crustacean Daphnia magna , as well as the bioadhesion of the particles to Lemna minor were evaluated. The results showed no significant effects of either particle on the specific growth rate, root length, and chlorophyll content of Lemna minor . The bioadhesion of both types of particles to the plant biomass was comparable. Furthermore, no significant effects were observed on the mobility and body length of Daphnia magna . Thus, the investigated polyethylene and cellulose microbeads showed no significant toxic effects on the tested organisms. How - ever, due to the persistence of polyethylene in the environment, the use of polyethylene microbeads in cosmetics and personal care products should be avoided","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"38 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aquatic Toxicity of Polyethylene and Microcrystalline Cellulose Microbeads Used as Abrasives in Cosmetics\",\"authors\":\"Martina Miloloža, Ula Rozman, D. Kučić Grgić, Gabriela Kalčikova\",\"doi\":\"10.15255/cabeq.2023.2181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microplastics have been part of personal care products for years, but due to micro - plastic pollution, many companies have replaced microplastics with natural particles, such as microcrystalline cellulose. Although natural particles are considered more envi - ronmentally friendly, their ecotoxicological profile is unknown. In this context, the aim of this study was to compare the ecotoxicity of polyethylene and microcrystalline cellu - lose microbeads, both extracted from a cosmetic product. The effects of the two types of particles on the aquatic macrophyte Lemna minor and the crustacean Daphnia magna , as well as the bioadhesion of the particles to Lemna minor were evaluated. The results showed no significant effects of either particle on the specific growth rate, root length, and chlorophyll content of Lemna minor . The bioadhesion of both types of particles to the plant biomass was comparable. Furthermore, no significant effects were observed on the mobility and body length of Daphnia magna . Thus, the investigated polyethylene and cellulose microbeads showed no significant toxic effects on the tested organisms. How - ever, due to the persistence of polyethylene in the environment, the use of polyethylene microbeads in cosmetics and personal care products should be avoided\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2023.2181\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15255/cabeq.2023.2181","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aquatic Toxicity of Polyethylene and Microcrystalline Cellulose Microbeads Used as Abrasives in Cosmetics
Microplastics have been part of personal care products for years, but due to micro - plastic pollution, many companies have replaced microplastics with natural particles, such as microcrystalline cellulose. Although natural particles are considered more envi - ronmentally friendly, their ecotoxicological profile is unknown. In this context, the aim of this study was to compare the ecotoxicity of polyethylene and microcrystalline cellu - lose microbeads, both extracted from a cosmetic product. The effects of the two types of particles on the aquatic macrophyte Lemna minor and the crustacean Daphnia magna , as well as the bioadhesion of the particles to Lemna minor were evaluated. The results showed no significant effects of either particle on the specific growth rate, root length, and chlorophyll content of Lemna minor . The bioadhesion of both types of particles to the plant biomass was comparable. Furthermore, no significant effects were observed on the mobility and body length of Daphnia magna . Thus, the investigated polyethylene and cellulose microbeads showed no significant toxic effects on the tested organisms. How - ever, due to the persistence of polyethylene in the environment, the use of polyethylene microbeads in cosmetics and personal care products should be avoided
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical and Biochemical Engineering Quarterly
Chemical and Biochemical Engineering Quarterly 工程技术-工程:化工
CiteScore
2.70
自引率
6.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required. The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review). The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing. Editor and Editorial board make the final decision about acceptance of a manuscript. Page charges are excluded.
期刊最新文献
Influence of Reaction Parameters and Feedstock Type on the Synthesis of Fatty Acid Propyl, Butyl, Isobutyl, Pentyl, and Isopentyl Esters Effect of Silver Addition on Cu-based Shape Memory Alloys Aquatic Toxicity of Polyethylene and Microcrystalline Cellulose Microbeads Used as Abrasives in Cosmetics Lauric Acid-based Polyol Esters as Potential Bio-based Lubricants for Diesel Fuel Amoxicillin Biodegradation with Bacillus subtilis and Pseudomonas aeruginosa: Characterization of Relevant Degradation Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1