月桂酸多元醇酯作为生物基柴油润滑油的应用前景

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Chemical and Biochemical Engineering Quarterly Pub Date : 2023-10-04 DOI:10.15255/cabeq.2023.2185
Ivan Pucko, Kristina Crnjac, Fabio Faraguna
{"title":"月桂酸多元醇酯作为生物基柴油润滑油的应用前景","authors":"Ivan Pucko, Kristina Crnjac, Fabio Faraguna","doi":"10.15255/cabeq.2023.2185","DOIUrl":null,"url":null,"abstract":"In this paper, lubricants based on lauric acid and different polyols – neopentyl glycol (NPG), trimethylolpropane (TMP) and pentaerythritol (PE) – were synthesized. After purification, their purity of > 97 mol% was confirmed by infrared spectroscopy and pro - ton nuclear magnetic resonance. Synthesized lubricants 100 to 5000 ppm formulations with diesel showed similar density, kinematic viscosity, and low-temperature behavior to diesel according to standard tests, meaning that they can be used in current diesel engines. They have improved the lubricity of the formulations, as confirmed by a lower coefficient of friction, and an almost 50 % improvement in wear scar diameter (accord - ing to EN 12156-1).","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"100 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lauric Acid-based Polyol Esters as Potential Bio-based Lubricants for Diesel Fuel\",\"authors\":\"Ivan Pucko, Kristina Crnjac, Fabio Faraguna\",\"doi\":\"10.15255/cabeq.2023.2185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, lubricants based on lauric acid and different polyols – neopentyl glycol (NPG), trimethylolpropane (TMP) and pentaerythritol (PE) – were synthesized. After purification, their purity of > 97 mol% was confirmed by infrared spectroscopy and pro - ton nuclear magnetic resonance. Synthesized lubricants 100 to 5000 ppm formulations with diesel showed similar density, kinematic viscosity, and low-temperature behavior to diesel according to standard tests, meaning that they can be used in current diesel engines. They have improved the lubricity of the formulations, as confirmed by a lower coefficient of friction, and an almost 50 % improvement in wear scar diameter (accord - ing to EN 12156-1).\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2023.2185\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15255/cabeq.2023.2185","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lauric Acid-based Polyol Esters as Potential Bio-based Lubricants for Diesel Fuel
In this paper, lubricants based on lauric acid and different polyols – neopentyl glycol (NPG), trimethylolpropane (TMP) and pentaerythritol (PE) – were synthesized. After purification, their purity of > 97 mol% was confirmed by infrared spectroscopy and pro - ton nuclear magnetic resonance. Synthesized lubricants 100 to 5000 ppm formulations with diesel showed similar density, kinematic viscosity, and low-temperature behavior to diesel according to standard tests, meaning that they can be used in current diesel engines. They have improved the lubricity of the formulations, as confirmed by a lower coefficient of friction, and an almost 50 % improvement in wear scar diameter (accord - ing to EN 12156-1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical and Biochemical Engineering Quarterly
Chemical and Biochemical Engineering Quarterly 工程技术-工程:化工
CiteScore
2.70
自引率
6.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required. The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review). The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing. Editor and Editorial board make the final decision about acceptance of a manuscript. Page charges are excluded.
期刊最新文献
Influence of Reaction Parameters and Feedstock Type on the Synthesis of Fatty Acid Propyl, Butyl, Isobutyl, Pentyl, and Isopentyl Esters Effect of Silver Addition on Cu-based Shape Memory Alloys Aquatic Toxicity of Polyethylene and Microcrystalline Cellulose Microbeads Used as Abrasives in Cosmetics Lauric Acid-based Polyol Esters as Potential Bio-based Lubricants for Diesel Fuel Amoxicillin Biodegradation with Bacillus subtilis and Pseudomonas aeruginosa: Characterization of Relevant Degradation Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1