Yudi Qin , Xiaoru Chen , Zhoucheng Xu , Jiuyu Du , Hewu Wang , Qiang Zhang , Minggao Ouyang
{"title":"热电耦合退化机制下参与电网频率调节的锂离子电池","authors":"Yudi Qin , Xiaoru Chen , Zhoucheng Xu , Jiuyu Du , Hewu Wang , Qiang Zhang , Minggao Ouyang","doi":"10.1016/j.etran.2023.100290","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries<span><span> (LIBs) play an important role for the global net-zero emission trend. They are suitable for the power interaction with the power grid with high penetration renewable energy. However, the detail evolution of the LIBs participating in frequency regulation (FR) service at low temperature is critical for the all-climate application, especially the capacity decay and the related economic loss. This study reveals that the primary degradation mechanisms for FR operation at low temperature include lithium plating of anode and </span>lattice distortion of cathode. Surprisingly, FR with appropriate parameters for batteries at low temperature does not introduce additional capacity decay due to the great temperature rise brought about and the optimized interfacial mass transfer. This study then analyses the economy of electric vehicles (EVs) participating in FR service, which is called vehicle-to-grid (V2G). A better temperature control can improve the profit of 35.88 $/kW. An appropriate capability is also vital to improve the profit of FR service. Moreover, suitable FR conditions for LIBs can even bring a certain degree of capacity improvement at low temperature. This work guides the design criteria of non-destructive LIB interaction for future grid.</span></p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"19 ","pages":"Article 100290"},"PeriodicalIF":15.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium ion batteries participating in frequency regulation for power grid under the thermoelectric coupling degradation mechanisms\",\"authors\":\"Yudi Qin , Xiaoru Chen , Zhoucheng Xu , Jiuyu Du , Hewu Wang , Qiang Zhang , Minggao Ouyang\",\"doi\":\"10.1016/j.etran.2023.100290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-ion batteries<span><span> (LIBs) play an important role for the global net-zero emission trend. They are suitable for the power interaction with the power grid with high penetration renewable energy. However, the detail evolution of the LIBs participating in frequency regulation (FR) service at low temperature is critical for the all-climate application, especially the capacity decay and the related economic loss. This study reveals that the primary degradation mechanisms for FR operation at low temperature include lithium plating of anode and </span>lattice distortion of cathode. Surprisingly, FR with appropriate parameters for batteries at low temperature does not introduce additional capacity decay due to the great temperature rise brought about and the optimized interfacial mass transfer. This study then analyses the economy of electric vehicles (EVs) participating in FR service, which is called vehicle-to-grid (V2G). A better temperature control can improve the profit of 35.88 $/kW. An appropriate capability is also vital to improve the profit of FR service. Moreover, suitable FR conditions for LIBs can even bring a certain degree of capacity improvement at low temperature. This work guides the design criteria of non-destructive LIB interaction for future grid.</span></p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"19 \",\"pages\":\"Article 100290\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116823000656\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116823000656","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Lithium ion batteries participating in frequency regulation for power grid under the thermoelectric coupling degradation mechanisms
Lithium-ion batteries (LIBs) play an important role for the global net-zero emission trend. They are suitable for the power interaction with the power grid with high penetration renewable energy. However, the detail evolution of the LIBs participating in frequency regulation (FR) service at low temperature is critical for the all-climate application, especially the capacity decay and the related economic loss. This study reveals that the primary degradation mechanisms for FR operation at low temperature include lithium plating of anode and lattice distortion of cathode. Surprisingly, FR with appropriate parameters for batteries at low temperature does not introduce additional capacity decay due to the great temperature rise brought about and the optimized interfacial mass transfer. This study then analyses the economy of electric vehicles (EVs) participating in FR service, which is called vehicle-to-grid (V2G). A better temperature control can improve the profit of 35.88 $/kW. An appropriate capability is also vital to improve the profit of FR service. Moreover, suitable FR conditions for LIBs can even bring a certain degree of capacity improvement at low temperature. This work guides the design criteria of non-destructive LIB interaction for future grid.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.