Inkyu Oh, Michael A. Pence, Nikita G. Lukhanin, Oliver Rodríguez, Charles M. Schroeder, Joaquín Rodríguez-López
{"title":"Electrolab:一个开源的模块化平台,用于氧化还原活性电解质的自动表征","authors":"Inkyu Oh, Michael A. Pence, Nikita G. Lukhanin, Oliver Rodríguez, Charles M. Schroeder, Joaquín Rodríguez-López","doi":"10.1016/j.device.2023.100103","DOIUrl":null,"url":null,"abstract":"Electrochemical characterization of redox-active molecules in solution requires exploration of manifold conditions (e.g., concentration, electrolyte type, pH, ionic strength), leading to tedious and time-consuming experiments that are prone to user error. Here, we introduce the Electrolab, a modular, automated electrochemical characterization platform that seamlessly interfaces with common laboratory instrumentation and low-cost electromechanical components. We integrated a gantry-type robot carrying a multipurpose nozzle assembly to dispense and mix solutions as well as degas and clean a cell containing multiplexed microelectrochemical arrays. The system operates using Python code and a universal Arduino-based controller. We demonstrate the Electrolab by autonomously analyzing a redox mediator by performing 200 voltammograms and data analysis steps across a range of conditions. In addition, the Electrolab is used to titrate a redox-active polymer solution to identify conditions for optimizing electrochemical performance. Overall, the Electrolab device enables high-throughput, systematic exploration of redox electrolytes, opening new avenues for closed-loop optimization.","PeriodicalId":101324,"journal":{"name":"Device","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Electrolab: An open-source, modular platform for automated characterization of redox-active electrolytes\",\"authors\":\"Inkyu Oh, Michael A. Pence, Nikita G. Lukhanin, Oliver Rodríguez, Charles M. Schroeder, Joaquín Rodríguez-López\",\"doi\":\"10.1016/j.device.2023.100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical characterization of redox-active molecules in solution requires exploration of manifold conditions (e.g., concentration, electrolyte type, pH, ionic strength), leading to tedious and time-consuming experiments that are prone to user error. Here, we introduce the Electrolab, a modular, automated electrochemical characterization platform that seamlessly interfaces with common laboratory instrumentation and low-cost electromechanical components. We integrated a gantry-type robot carrying a multipurpose nozzle assembly to dispense and mix solutions as well as degas and clean a cell containing multiplexed microelectrochemical arrays. The system operates using Python code and a universal Arduino-based controller. We demonstrate the Electrolab by autonomously analyzing a redox mediator by performing 200 voltammograms and data analysis steps across a range of conditions. In addition, the Electrolab is used to titrate a redox-active polymer solution to identify conditions for optimizing electrochemical performance. Overall, the Electrolab device enables high-throughput, systematic exploration of redox electrolytes, opening new avenues for closed-loop optimization.\",\"PeriodicalId\":101324,\"journal\":{\"name\":\"Device\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Device\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.device.2023.100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Device","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.device.2023.100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Electrolab: An open-source, modular platform for automated characterization of redox-active electrolytes
Electrochemical characterization of redox-active molecules in solution requires exploration of manifold conditions (e.g., concentration, electrolyte type, pH, ionic strength), leading to tedious and time-consuming experiments that are prone to user error. Here, we introduce the Electrolab, a modular, automated electrochemical characterization platform that seamlessly interfaces with common laboratory instrumentation and low-cost electromechanical components. We integrated a gantry-type robot carrying a multipurpose nozzle assembly to dispense and mix solutions as well as degas and clean a cell containing multiplexed microelectrochemical arrays. The system operates using Python code and a universal Arduino-based controller. We demonstrate the Electrolab by autonomously analyzing a redox mediator by performing 200 voltammograms and data analysis steps across a range of conditions. In addition, the Electrolab is used to titrate a redox-active polymer solution to identify conditions for optimizing electrochemical performance. Overall, the Electrolab device enables high-throughput, systematic exploration of redox electrolytes, opening new avenues for closed-loop optimization.