Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, Julia Lutz
{"title":"基于主成分的降水强度-持续时间-频率(IDF)统计区划策略","authors":"Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, Julia Lutz","doi":"10.5194/hess-27-3719-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Intensity–duration–frequency (IDF) statistics describing extreme rainfall intensities in Norway were analysed with the purpose of investigating how the shape of the curves is influenced by geographical conditions and local climate characteristics. To this end, principal component analysis (PCA) was used to quantify salient information about the IDF curves, and a Bayesian linear regression was used to study the dependency of the shapes on climatological and geographical information. Our analysis indicated that the shapes of IDF curves in Norway are influenced by both geographical conditions and 24 h precipitation statistics. Based on this analysis, an empirical model was constructed to predict IDF curves in locations with insufficient sub-hourly rain gauge data. Our new method was also compared with a recently proposed formula for estimating sub-daily rainfall intensity based on 24 h rain gauge data. We found that a Bayesian inference of a PCA representation of IDF curves provides a promising strategy for estimating sub-daily return levels for rainfall.","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":"21 1","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics\",\"authors\":\"Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, Julia Lutz\",\"doi\":\"10.5194/hess-27-3719-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Intensity–duration–frequency (IDF) statistics describing extreme rainfall intensities in Norway were analysed with the purpose of investigating how the shape of the curves is influenced by geographical conditions and local climate characteristics. To this end, principal component analysis (PCA) was used to quantify salient information about the IDF curves, and a Bayesian linear regression was used to study the dependency of the shapes on climatological and geographical information. Our analysis indicated that the shapes of IDF curves in Norway are influenced by both geographical conditions and 24 h precipitation statistics. Based on this analysis, an empirical model was constructed to predict IDF curves in locations with insufficient sub-hourly rain gauge data. Our new method was also compared with a recently proposed formula for estimating sub-daily rainfall intensity based on 24 h rain gauge data. We found that a Bayesian inference of a PCA representation of IDF curves provides a promising strategy for estimating sub-daily return levels for rainfall.\",\"PeriodicalId\":13143,\"journal\":{\"name\":\"Hydrology and Earth System Sciences\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology and Earth System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/hess-27-3719-2023\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/hess-27-3719-2023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Abstract. Intensity–duration–frequency (IDF) statistics describing extreme rainfall intensities in Norway were analysed with the purpose of investigating how the shape of the curves is influenced by geographical conditions and local climate characteristics. To this end, principal component analysis (PCA) was used to quantify salient information about the IDF curves, and a Bayesian linear regression was used to study the dependency of the shapes on climatological and geographical information. Our analysis indicated that the shapes of IDF curves in Norway are influenced by both geographical conditions and 24 h precipitation statistics. Based on this analysis, an empirical model was constructed to predict IDF curves in locations with insufficient sub-hourly rain gauge data. Our new method was also compared with a recently proposed formula for estimating sub-daily rainfall intensity based on 24 h rain gauge data. We found that a Bayesian inference of a PCA representation of IDF curves provides a promising strategy for estimating sub-daily return levels for rainfall.
期刊介绍:
Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.