{"title":"调节对聚合物复合材料动态行为的影响","authors":"Marek Borowiec, Robert Szczepaniak, José Machado","doi":"10.12913/22998624/171492","DOIUrl":null,"url":null,"abstract":"The aim of this study is to determine the effect of environmental factors in the form of UV radiation and temperature on the amplitude-frequency behaviour of polymer composites (prepregs) based on a frame - work of thermosetting epoxy resin reinforced with high-strength R-glass fibres. Two series of composites with different fibre arrangements were prepared. The series had fibres arranged at angles of 30°, 45°, and 60°, at symmetric and asymmetric orientations in relation to the central layer. The composites were subjected to conditioning which simulated a six-month period of use in the spring and summer in the temperate warm transitional climate of Central and Eastern Europe. An UV QUV/SPRAY/RP accelerated aging chamber manufactured by Q-Lab Corporation was used for this purpose, and UV-A 340 lamps were used to simulate daylight. In addition, varying loads caused by sudden temperature changes were simu - lated using the Thermal Shock Chamber T/60/V2 Weisstechnik. Conditioned samples were tested using a TIRAvib 50101 electromagnetic exciter in combination with an LMS Scadias III controller and Test. Lab software. The results of the tests, in the form of amplitude-frequency diagrams in resonance regions, indicated that certain changes occurred as a result of the conditioning, which is a new development in the area of material tests. The results shed light on the effects of environmental conditions on the stiffness characteristics of composites, causing dynamic nonlinearities when operating at resonant frequencies.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Conditioning on Dynamic Behaviour of Polymer Composites\",\"authors\":\"Marek Borowiec, Robert Szczepaniak, José Machado\",\"doi\":\"10.12913/22998624/171492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to determine the effect of environmental factors in the form of UV radiation and temperature on the amplitude-frequency behaviour of polymer composites (prepregs) based on a frame - work of thermosetting epoxy resin reinforced with high-strength R-glass fibres. Two series of composites with different fibre arrangements were prepared. The series had fibres arranged at angles of 30°, 45°, and 60°, at symmetric and asymmetric orientations in relation to the central layer. The composites were subjected to conditioning which simulated a six-month period of use in the spring and summer in the temperate warm transitional climate of Central and Eastern Europe. An UV QUV/SPRAY/RP accelerated aging chamber manufactured by Q-Lab Corporation was used for this purpose, and UV-A 340 lamps were used to simulate daylight. In addition, varying loads caused by sudden temperature changes were simu - lated using the Thermal Shock Chamber T/60/V2 Weisstechnik. Conditioned samples were tested using a TIRAvib 50101 electromagnetic exciter in combination with an LMS Scadias III controller and Test. Lab software. The results of the tests, in the form of amplitude-frequency diagrams in resonance regions, indicated that certain changes occurred as a result of the conditioning, which is a new development in the area of material tests. The results shed light on the effects of environmental conditions on the stiffness characteristics of composites, causing dynamic nonlinearities when operating at resonant frequencies.\",\"PeriodicalId\":46357,\"journal\":{\"name\":\"Advances in Science and Technology-Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology-Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12913/22998624/171492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/171492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
The Influence of Conditioning on Dynamic Behaviour of Polymer Composites
The aim of this study is to determine the effect of environmental factors in the form of UV radiation and temperature on the amplitude-frequency behaviour of polymer composites (prepregs) based on a frame - work of thermosetting epoxy resin reinforced with high-strength R-glass fibres. Two series of composites with different fibre arrangements were prepared. The series had fibres arranged at angles of 30°, 45°, and 60°, at symmetric and asymmetric orientations in relation to the central layer. The composites were subjected to conditioning which simulated a six-month period of use in the spring and summer in the temperate warm transitional climate of Central and Eastern Europe. An UV QUV/SPRAY/RP accelerated aging chamber manufactured by Q-Lab Corporation was used for this purpose, and UV-A 340 lamps were used to simulate daylight. In addition, varying loads caused by sudden temperature changes were simu - lated using the Thermal Shock Chamber T/60/V2 Weisstechnik. Conditioned samples were tested using a TIRAvib 50101 electromagnetic exciter in combination with an LMS Scadias III controller and Test. Lab software. The results of the tests, in the form of amplitude-frequency diagrams in resonance regions, indicated that certain changes occurred as a result of the conditioning, which is a new development in the area of material tests. The results shed light on the effects of environmental conditions on the stiffness characteristics of composites, causing dynamic nonlinearities when operating at resonant frequencies.