基于图的离散选择方法

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Network Science Pub Date : 2023-11-06 DOI:10.1017/nws.2023.20
Kiran Tomlinson, Austin R. Benson
{"title":"基于图的离散选择方法","authors":"Kiran Tomlinson, Austin R. Benson","doi":"10.1017/nws.2023.20","DOIUrl":null,"url":null,"abstract":"Abstract Choices made by individuals have widespread impacts—for instance, people choose between political candidates to vote for, between social media posts to share, and between brands to purchase—moreover, data on these choices are increasingly abundant. Discrete choice models are a key tool for learning individual preferences from such data. Additionally, social factors like conformity and contagion influence individual choice. Traditional methods for incorporating these factors into choice models do not account for the entire social network and require hand-crafted features. To overcome these limitations, we use graph learning to study choice in networked contexts. We identify three ways in which graph learning techniques can be used for discrete choice: learning chooser representations, regularizing choice model parameters, and directly constructing predictions from a network. We design methods in each category and test them on real-world choice datasets, including county-level 2016 US election results and Android app installation and usage data. We show that incorporating social network structure can improve the predictions of the standard econometric choice model, the multinomial logit. We provide evidence that app installations are influenced by social context, but we find no such effect on app usage among the same participants, which instead is habit-driven. In the election data, we highlight the additional insights a discrete choice framework provides over classification or regression, the typical approaches. On synthetic data, we demonstrate the sample complexity benefit of using social information in choice models.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graph-based methods for discrete choice\",\"authors\":\"Kiran Tomlinson, Austin R. Benson\",\"doi\":\"10.1017/nws.2023.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Choices made by individuals have widespread impacts—for instance, people choose between political candidates to vote for, between social media posts to share, and between brands to purchase—moreover, data on these choices are increasingly abundant. Discrete choice models are a key tool for learning individual preferences from such data. Additionally, social factors like conformity and contagion influence individual choice. Traditional methods for incorporating these factors into choice models do not account for the entire social network and require hand-crafted features. To overcome these limitations, we use graph learning to study choice in networked contexts. We identify three ways in which graph learning techniques can be used for discrete choice: learning chooser representations, regularizing choice model parameters, and directly constructing predictions from a network. We design methods in each category and test them on real-world choice datasets, including county-level 2016 US election results and Android app installation and usage data. We show that incorporating social network structure can improve the predictions of the standard econometric choice model, the multinomial logit. We provide evidence that app installations are influenced by social context, but we find no such effect on app usage among the same participants, which instead is habit-driven. In the election data, we highlight the additional insights a discrete choice framework provides over classification or regression, the typical approaches. On synthetic data, we demonstrate the sample complexity benefit of using social information in choice models.\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2023.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2023.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

个人做出的选择具有广泛的影响——例如,人们选择投票给政治候选人,选择分享社交媒体帖子,选择购买品牌——此外,关于这些选择的数据越来越丰富。离散选择模型是从这些数据中学习个人偏好的关键工具。此外,从众、传染等社会因素也会影响个体的选择。将这些因素纳入选择模型的传统方法不能考虑整个社会网络,而且需要手工制作特征。为了克服这些限制,我们使用图学习来研究网络环境中的选择。我们确定了图学习技术可用于离散选择的三种方式:学习选择器表示,正则化选择模型参数,以及直接从网络构建预测。我们在每个类别中设计方法,并在现实世界的选择数据集上进行测试,包括2016年美国县级选举结果和安卓应用程序安装和使用数据。我们表明,纳入社会网络结构可以改善标准计量经济学选择模型的预测,即多项逻辑。我们提供的证据表明,应用程序的安装受到社会背景的影响,但我们发现,在相同的参与者中,应用程序的使用没有这种影响,而是习惯驱动的。在选举数据中,我们强调了离散选择框架提供的额外见解,而不是典型的分类或回归方法。在合成数据上,我们展示了在选择模型中使用社会信息的样本复杂性优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph-based methods for discrete choice
Abstract Choices made by individuals have widespread impacts—for instance, people choose between political candidates to vote for, between social media posts to share, and between brands to purchase—moreover, data on these choices are increasingly abundant. Discrete choice models are a key tool for learning individual preferences from such data. Additionally, social factors like conformity and contagion influence individual choice. Traditional methods for incorporating these factors into choice models do not account for the entire social network and require hand-crafted features. To overcome these limitations, we use graph learning to study choice in networked contexts. We identify three ways in which graph learning techniques can be used for discrete choice: learning chooser representations, regularizing choice model parameters, and directly constructing predictions from a network. We design methods in each category and test them on real-world choice datasets, including county-level 2016 US election results and Android app installation and usage data. We show that incorporating social network structure can improve the predictions of the standard econometric choice model, the multinomial logit. We provide evidence that app installations are influenced by social context, but we find no such effect on app usage among the same participants, which instead is habit-driven. In the election data, we highlight the additional insights a discrete choice framework provides over classification or regression, the typical approaches. On synthetic data, we demonstrate the sample complexity benefit of using social information in choice models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
期刊最新文献
Guiding prevention initiatives by applying network analysis to systems maps of adverse childhood experiences and adolescent suicide The latent cognitive structures of social networks Algorithmic aspects of temporal betweenness When can networks be inferred from observed groups? Generating preferential attachment graphs via a Pólya urn with expanding colors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1