利用微结构的位置分布抑制薄膜起皱

IF 2.7 3区 材料科学 Q2 ENGINEERING, MECHANICAL International Journal of Mechanics and Materials in Design Pub Date : 2023-05-30 DOI:10.1007/s10999-023-09653-w
Peng Sun, Jin Huang, Jiaying Zhang, Fanbo Meng
{"title":"利用微结构的位置分布抑制薄膜起皱","authors":"Peng Sun,&nbsp;Jin Huang,&nbsp;Jiaying Zhang,&nbsp;Fanbo Meng","doi":"10.1007/s10999-023-09653-w","DOIUrl":null,"url":null,"abstract":"<div><p>Thin film structures will be wrinkled due to buckling deformation under the influence of compressive stress. The wrinkle and tension states of the thin film can be changed by introducing microstructures. So we introduce rigid elements on the thin film to suppress the wrinkling behavior of the thin film, and propose a method to calculate the optimal distribution position of the rigid elements on the thin film. Using this method, the optimal distribution positions of the square rigid elements on the biaxially stretched square thin film were calculated, and the effectiveness of introducing rigid elements on the thin film to suppress the wrinkle was verified through numerical simulation and experimental research. The results show that the wrinkling behaviour of the film can be effectively suppressed by placing rigid elements at the optimal position obtained by the method proposed to this paper. Our findings could provide new design ideas for thin-film antenna structures in aerospace engineering.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 1","pages":"3 - 13"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wrinkling suppression in thin film using position distribution of microstructures\",\"authors\":\"Peng Sun,&nbsp;Jin Huang,&nbsp;Jiaying Zhang,&nbsp;Fanbo Meng\",\"doi\":\"10.1007/s10999-023-09653-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thin film structures will be wrinkled due to buckling deformation under the influence of compressive stress. The wrinkle and tension states of the thin film can be changed by introducing microstructures. So we introduce rigid elements on the thin film to suppress the wrinkling behavior of the thin film, and propose a method to calculate the optimal distribution position of the rigid elements on the thin film. Using this method, the optimal distribution positions of the square rigid elements on the biaxially stretched square thin film were calculated, and the effectiveness of introducing rigid elements on the thin film to suppress the wrinkle was verified through numerical simulation and experimental research. The results show that the wrinkling behaviour of the film can be effectively suppressed by placing rigid elements at the optimal position obtained by the method proposed to this paper. Our findings could provide new design ideas for thin-film antenna structures in aerospace engineering.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"20 1\",\"pages\":\"3 - 13\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09653-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09653-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在压应力的影响下,薄膜结构会因屈曲变形而起皱。通过引入微结构可以改变薄膜的起皱和拉伸状态。因此,我们在薄膜上引入刚性元素来抑制薄膜的起皱行为,并提出了一种计算刚性元素在薄膜上最佳分布位置的方法。利用该方法计算了方形刚性元素在双轴拉伸方形薄膜上的最佳分布位置,并通过数值模拟和实验研究验证了在薄膜上引入刚性元素抑制起皱的有效性。结果表明,通过本文提出的方法在最佳位置放置刚性元素,可以有效抑制薄膜的起皱行为。我们的研究结果可为航空航天工程中的薄膜天线结构提供新的设计思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wrinkling suppression in thin film using position distribution of microstructures

Thin film structures will be wrinkled due to buckling deformation under the influence of compressive stress. The wrinkle and tension states of the thin film can be changed by introducing microstructures. So we introduce rigid elements on the thin film to suppress the wrinkling behavior of the thin film, and propose a method to calculate the optimal distribution position of the rigid elements on the thin film. Using this method, the optimal distribution positions of the square rigid elements on the biaxially stretched square thin film were calculated, and the effectiveness of introducing rigid elements on the thin film to suppress the wrinkle was verified through numerical simulation and experimental research. The results show that the wrinkling behaviour of the film can be effectively suppressed by placing rigid elements at the optimal position obtained by the method proposed to this paper. Our findings could provide new design ideas for thin-film antenna structures in aerospace engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
期刊最新文献
Strength and stability analysis of composite inverted conical structure Multi-objective topology optimization for materials with negative Poisson’s ratio and thermal insulation An efficient approximation algorithm for variance global sensitivity by Bayesian updating Theoretical prediction and experimental verification of thermomechanical deflection responses of geometrically nonlinear porous graded curved structure Voxel-based evolutionary topological optimization of connected structures for natural frequency optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1