{"title":"基于IRCMDE的ME型船用柴油机喷油器故障诊断","authors":"Qingguo Shi, Yihuai Hu, Guohua Yan","doi":"10.2478/pomr-2023-0043","DOIUrl":null,"url":null,"abstract":"Abstract As an important component of the fuel injection system, the fuel injector is crucial for ensuring the power, economy, and emissions for a whole ME (machine electronically-controlled) marine diesel engine. However, injectors are most prone to failures such as reduced pressure at the opening valve, clogged spray holes and worn needle valves, because of the harsh working conditions. The failure characteristics are non-stationary and non-linear. Therefore, to efficiently extract fault features, an improved refined composite multi-scale dispersion entropy (IRCMDE) is proposed, which uses the energy distribution of sampling points as weights for coarse-grained calculation, then fast correlation-based filter(FCBF) and support vector machine (SVM) are used for feature selection and fault classification, respectively. The experimental results from a MAN B&W 6S35ME-B9 marine diesel engine show that the proposed algorithm can achieve 92.12% fault accuracy for injector faults, which is higher than multiscale dispersion entropy (MDE), refined composite multiscale dispersion entropy (RCMDE) and multiscale permutation entropy (MPE). Moreover, the experiment has also proved that, due to the double-walled structure of the high-pressure fuel pipe, the fuel injection pressure signal is more accurate than the vibration signal in reflecting the injector operating conditions.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"78 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnosis of ME Marine Diesel Engine Fuel Injector with Novel IRCMDE Method\",\"authors\":\"Qingguo Shi, Yihuai Hu, Guohua Yan\",\"doi\":\"10.2478/pomr-2023-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As an important component of the fuel injection system, the fuel injector is crucial for ensuring the power, economy, and emissions for a whole ME (machine electronically-controlled) marine diesel engine. However, injectors are most prone to failures such as reduced pressure at the opening valve, clogged spray holes and worn needle valves, because of the harsh working conditions. The failure characteristics are non-stationary and non-linear. Therefore, to efficiently extract fault features, an improved refined composite multi-scale dispersion entropy (IRCMDE) is proposed, which uses the energy distribution of sampling points as weights for coarse-grained calculation, then fast correlation-based filter(FCBF) and support vector machine (SVM) are used for feature selection and fault classification, respectively. The experimental results from a MAN B&W 6S35ME-B9 marine diesel engine show that the proposed algorithm can achieve 92.12% fault accuracy for injector faults, which is higher than multiscale dispersion entropy (MDE), refined composite multiscale dispersion entropy (RCMDE) and multiscale permutation entropy (MPE). Moreover, the experiment has also proved that, due to the double-walled structure of the high-pressure fuel pipe, the fuel injection pressure signal is more accurate than the vibration signal in reflecting the injector operating conditions.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2023-0043\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0043","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Fault Diagnosis of ME Marine Diesel Engine Fuel Injector with Novel IRCMDE Method
Abstract As an important component of the fuel injection system, the fuel injector is crucial for ensuring the power, economy, and emissions for a whole ME (machine electronically-controlled) marine diesel engine. However, injectors are most prone to failures such as reduced pressure at the opening valve, clogged spray holes and worn needle valves, because of the harsh working conditions. The failure characteristics are non-stationary and non-linear. Therefore, to efficiently extract fault features, an improved refined composite multi-scale dispersion entropy (IRCMDE) is proposed, which uses the energy distribution of sampling points as weights for coarse-grained calculation, then fast correlation-based filter(FCBF) and support vector machine (SVM) are used for feature selection and fault classification, respectively. The experimental results from a MAN B&W 6S35ME-B9 marine diesel engine show that the proposed algorithm can achieve 92.12% fault accuracy for injector faults, which is higher than multiscale dispersion entropy (MDE), refined composite multiscale dispersion entropy (RCMDE) and multiscale permutation entropy (MPE). Moreover, the experiment has also proved that, due to the double-walled structure of the high-pressure fuel pipe, the fuel injection pressure signal is more accurate than the vibration signal in reflecting the injector operating conditions.
期刊介绍:
The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components.
All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as:
all types of vessels and their equipment,
fixed and floating offshore units and their components,
autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV).
We welcome submissions from these fields in the following technical topics:
ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc.,
structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc.,
marine equipment: ship and offshore unit power plants: overboarding equipment; etc.