{"title":"静压止推轴承变形影响因素研究","authors":"Xiao-Dong Yu, Hai-Xin Liu, Fei-Hu Zhao, Rui-Chao Li, Kai-Xuan Sun, Yi-Han Wang, Li-Bo Guan, Rui-Chun Dai, Wen-Tao Jia, Jun-Feng Wang, Hui Jiang, Jian-Hua Jiao","doi":"10.1177/13506501231196436","DOIUrl":null,"url":null,"abstract":"When the hydrostatic thrust bearings operate under conditions of high speed and heavy load, the oil film will be strongly sheared and squeezed, which will increase the temperature of the hydrostatic oil film, resulting in uneven deformation of the workbench and tribology in serious cases. The deformation of the friction pair greatly affects the stability of the workbench during operation, and then affects the machining accuracy. Taking the hydrostatic thrust bearings as the research object, the model of hydrostatic thrust bearings was established based on the fluid–thermosolid coupling theory, and the influencing factors of the deformation of the hydrostatic thrust bearings are analyzed using ANSYS Workbench software, and the influencing laws are discussed. Finally, the correctness of the simulation method is verified by experiments. The results show that the larger the lubricating oil viscosity, the greater the deformation of the guide surface and the oil pad. With the increase in the rotation rate, the deformation of the guide surface and the oil pad increases continuously. With the increase in the inlet flow rate, the deformation of the guide surface and the oil pad is continuously reduced. In engineering practice, on the premise of ensuring the bearings capacity, low-viscosity lubricating oil should be used as much as possible, the rotation rate should be lower, or the inlet flow rate should be increased.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"8 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on influencing factors of deformation of hydrostatic thrust bearings\",\"authors\":\"Xiao-Dong Yu, Hai-Xin Liu, Fei-Hu Zhao, Rui-Chao Li, Kai-Xuan Sun, Yi-Han Wang, Li-Bo Guan, Rui-Chun Dai, Wen-Tao Jia, Jun-Feng Wang, Hui Jiang, Jian-Hua Jiao\",\"doi\":\"10.1177/13506501231196436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the hydrostatic thrust bearings operate under conditions of high speed and heavy load, the oil film will be strongly sheared and squeezed, which will increase the temperature of the hydrostatic oil film, resulting in uneven deformation of the workbench and tribology in serious cases. The deformation of the friction pair greatly affects the stability of the workbench during operation, and then affects the machining accuracy. Taking the hydrostatic thrust bearings as the research object, the model of hydrostatic thrust bearings was established based on the fluid–thermosolid coupling theory, and the influencing factors of the deformation of the hydrostatic thrust bearings are analyzed using ANSYS Workbench software, and the influencing laws are discussed. Finally, the correctness of the simulation method is verified by experiments. The results show that the larger the lubricating oil viscosity, the greater the deformation of the guide surface and the oil pad. With the increase in the rotation rate, the deformation of the guide surface and the oil pad increases continuously. With the increase in the inlet flow rate, the deformation of the guide surface and the oil pad is continuously reduced. In engineering practice, on the premise of ensuring the bearings capacity, low-viscosity lubricating oil should be used as much as possible, the rotation rate should be lower, or the inlet flow rate should be increased.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231196436\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501231196436","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on influencing factors of deformation of hydrostatic thrust bearings
When the hydrostatic thrust bearings operate under conditions of high speed and heavy load, the oil film will be strongly sheared and squeezed, which will increase the temperature of the hydrostatic oil film, resulting in uneven deformation of the workbench and tribology in serious cases. The deformation of the friction pair greatly affects the stability of the workbench during operation, and then affects the machining accuracy. Taking the hydrostatic thrust bearings as the research object, the model of hydrostatic thrust bearings was established based on the fluid–thermosolid coupling theory, and the influencing factors of the deformation of the hydrostatic thrust bearings are analyzed using ANSYS Workbench software, and the influencing laws are discussed. Finally, the correctness of the simulation method is verified by experiments. The results show that the larger the lubricating oil viscosity, the greater the deformation of the guide surface and the oil pad. With the increase in the rotation rate, the deformation of the guide surface and the oil pad increases continuously. With the increase in the inlet flow rate, the deformation of the guide surface and the oil pad is continuously reduced. In engineering practice, on the premise of ensuring the bearings capacity, low-viscosity lubricating oil should be used as much as possible, the rotation rate should be lower, or the inlet flow rate should be increased.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).