PVD合成TiN和TiCN涂层在放电等离子烧结NiTi基体上的腐蚀行为

Nasim Botshekanan, Hudsa Majidian, Mohammad Farvizi
{"title":"PVD合成TiN和TiCN涂层在放电等离子烧结NiTi基体上的腐蚀行为","authors":"Nasim Botshekanan, Hudsa Majidian, Mohammad Farvizi","doi":"10.53063/synsint.2023.33166","DOIUrl":null,"url":null,"abstract":"TiN and TiCN coatings have garnered widespread attentions in the field of materials science and engineering because of their exceptional characteristics, including high melting point, excellent thermal conductivity, remarkable chemical stability, superior corrosion and wear resistance, and notable biocompatibility. These properties make them highly suitable for coating various alloys, and as a result, they have been successfully applied in numerous applications. The aim of this research study is to delve into the corrosion behavior of spark plasma sintered NiTi substrates that were coated with TiN and TiCN employing physical vapor deposition (cathodic arc technology). In order to comprehensively analyze the corrosion response, potentiodynamic polarization and electrochemical impedance spectroscopy techniques were employed. To gain deeper insights into the impact of the coating, a meticulous comparison was conducted between the corrosion resistance of the uncoated specimen and that of the coated ones. The results showcased a significant enhancement in corrosion resistance for both coated samples when compared to the uncoated NiTi substrate. However, it was found that the TiN-coated specimen showed even higher corrosion resistance than the TiCN-coated counterpart. These findings highlight the superiority of TiN coatings in terms of corrosion resistance when applied on the NiTi substrate.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion behavior of TiN and TiCN coatings synthesized by PVD on the spark plasma sintered NiTi substrate\",\"authors\":\"Nasim Botshekanan, Hudsa Majidian, Mohammad Farvizi\",\"doi\":\"10.53063/synsint.2023.33166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TiN and TiCN coatings have garnered widespread attentions in the field of materials science and engineering because of their exceptional characteristics, including high melting point, excellent thermal conductivity, remarkable chemical stability, superior corrosion and wear resistance, and notable biocompatibility. These properties make them highly suitable for coating various alloys, and as a result, they have been successfully applied in numerous applications. The aim of this research study is to delve into the corrosion behavior of spark plasma sintered NiTi substrates that were coated with TiN and TiCN employing physical vapor deposition (cathodic arc technology). In order to comprehensively analyze the corrosion response, potentiodynamic polarization and electrochemical impedance spectroscopy techniques were employed. To gain deeper insights into the impact of the coating, a meticulous comparison was conducted between the corrosion resistance of the uncoated specimen and that of the coated ones. The results showcased a significant enhancement in corrosion resistance for both coated samples when compared to the uncoated NiTi substrate. However, it was found that the TiN-coated specimen showed even higher corrosion resistance than the TiCN-coated counterpart. These findings highlight the superiority of TiN coatings in terms of corrosion resistance when applied on the NiTi substrate.\",\"PeriodicalId\":22113,\"journal\":{\"name\":\"Synthesis and Sintering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis and Sintering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53063/synsint.2023.33166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2023.33166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

TiN和TiCN涂层因其高熔点、优异的导热性、优异的化学稳定性、优异的耐蚀性和耐磨性以及显著的生物相容性等特点,在材料科学和工程领域得到了广泛的关注。这些特性使它们非常适合涂覆各种合金,因此,它们已成功地应用于许多应用中。本研究的目的是深入研究采用物理气相沉积(阴极电弧技术)涂层TiN和TiCN的火花等离子烧结NiTi衬底的腐蚀行为。为了全面分析腐蚀响应,采用了动电位极化和电化学阻抗谱技术。为了更深入地了解涂层的影响,对未涂层的样品和涂层的样品的耐腐蚀性进行了细致的比较。结果表明,与未涂覆的NiTi基板相比,两种涂层样品的耐腐蚀性都有显著增强。然而,发现tin涂层试样比ticn涂层试样具有更高的耐腐蚀性。这些发现突出了TiN涂层在NiTi基体上的耐腐蚀性优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corrosion behavior of TiN and TiCN coatings synthesized by PVD on the spark plasma sintered NiTi substrate
TiN and TiCN coatings have garnered widespread attentions in the field of materials science and engineering because of their exceptional characteristics, including high melting point, excellent thermal conductivity, remarkable chemical stability, superior corrosion and wear resistance, and notable biocompatibility. These properties make them highly suitable for coating various alloys, and as a result, they have been successfully applied in numerous applications. The aim of this research study is to delve into the corrosion behavior of spark plasma sintered NiTi substrates that were coated with TiN and TiCN employing physical vapor deposition (cathodic arc technology). In order to comprehensively analyze the corrosion response, potentiodynamic polarization and electrochemical impedance spectroscopy techniques were employed. To gain deeper insights into the impact of the coating, a meticulous comparison was conducted between the corrosion resistance of the uncoated specimen and that of the coated ones. The results showcased a significant enhancement in corrosion resistance for both coated samples when compared to the uncoated NiTi substrate. However, it was found that the TiN-coated specimen showed even higher corrosion resistance than the TiCN-coated counterpart. These findings highlight the superiority of TiN coatings in terms of corrosion resistance when applied on the NiTi substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D-printed calcium magnesium silicates: A mini-review Solid-solution phase formation rules for high entropy alloys: A thermodynamic perspective A review of synthesis strategies for nickel cobaltite-based composites in supercapacitor applications Synthesis and doping of high-temperature resistant spinel nano pigments: A review Effects of die geometry and insulation on the energy and electrical parameters analyses of spark plasma sintered TiC ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1