基于计算机视觉的建筑和拆除废弃物识别算法

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY Advances in Science and Technology-Research Journal Pub Date : 2023-10-19 DOI:10.4028/p-mj94xc
Tomáš Zbíral, Václav Nežerka
{"title":"基于计算机视觉的建筑和拆除废弃物识别算法","authors":"Tomáš Zbíral, Václav Nežerka","doi":"10.4028/p-mj94xc","DOIUrl":null,"url":null,"abstract":"The construction industry generates a significant amount of waste, posing challenges for efficient waste management and resource recovery. This paper presents a preliminary study on the use of lightweight computer vision (CV) algorithms for the automatic recognition of construction and demolition waste (CDW) materials. Utilizing image datasets acquired by drones, the study aims to develop strategies for distinguishing between individual CDW materials based on the mean intensity gradient, brightness, and relative representation of color channels. Results indicate that the proposed method can effectively recognize crucial CDW materials, paving the way for potential applications in industry and geodesy. Further research is needed to test additional materials and metrics to refine the method for practical implementation.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":"2 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer Vision-Based Algorithms for Recognition of Construction and Demolition Waste Materials\",\"authors\":\"Tomáš Zbíral, Václav Nežerka\",\"doi\":\"10.4028/p-mj94xc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction industry generates a significant amount of waste, posing challenges for efficient waste management and resource recovery. This paper presents a preliminary study on the use of lightweight computer vision (CV) algorithms for the automatic recognition of construction and demolition waste (CDW) materials. Utilizing image datasets acquired by drones, the study aims to develop strategies for distinguishing between individual CDW materials based on the mean intensity gradient, brightness, and relative representation of color channels. Results indicate that the proposed method can effectively recognize crucial CDW materials, paving the way for potential applications in industry and geodesy. Further research is needed to test additional materials and metrics to refine the method for practical implementation.\",\"PeriodicalId\":46357,\"journal\":{\"name\":\"Advances in Science and Technology-Research Journal\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology-Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-mj94xc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-mj94xc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

建造业产生大量废物,对废物的有效管理和资源回收提出挑战。本文对轻量化计算机视觉(CV)算法在建筑垃圾材料自动识别中的应用进行了初步研究。利用无人机获取的图像数据集,该研究旨在开发基于平均强度梯度、亮度和颜色通道的相对表示来区分单个CDW材料的策略。结果表明,该方法可以有效地识别关键的CDW材料,为工业和大地测量的潜在应用铺平了道路。需要进一步的研究来测试额外的材料和度量,以改进实际实施的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer Vision-Based Algorithms for Recognition of Construction and Demolition Waste Materials
The construction industry generates a significant amount of waste, posing challenges for efficient waste management and resource recovery. This paper presents a preliminary study on the use of lightweight computer vision (CV) algorithms for the automatic recognition of construction and demolition waste (CDW) materials. Utilizing image datasets acquired by drones, the study aims to develop strategies for distinguishing between individual CDW materials based on the mean intensity gradient, brightness, and relative representation of color channels. Results indicate that the proposed method can effectively recognize crucial CDW materials, paving the way for potential applications in industry and geodesy. Further research is needed to test additional materials and metrics to refine the method for practical implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
期刊最新文献
Investigation of a Shock Freezing Concept with Additional Electromagnetic Field Exposure Literature Review of Applicable Ballistic Materials for Temporary Wooden Building Envelopes Utilization of Levoglucosan Production By-Products Development of a Performance-Based Specification Model of Combat Clothing for the Procurement Process in Estonia Manufacturing of Bioactive Biodegradable Scaffolds by Stereolithography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1