基于深度学习的机器人辅助视网膜下注射针头检测和定位

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE CAAI Transactions on Intelligence Technology Pub Date : 2023-05-29 DOI:10.1049/cit2.12242
Mingchuan Zhou, Xiangyu Guo, Matthias Grimm, Elias Lochner, Zhongliang Jiang, Abouzar Eslami, Juan Ye, Nassir Navab, Alois Knoll, Mohammad Ali Nasseri
{"title":"基于深度学习的机器人辅助视网膜下注射针头检测和定位","authors":"Mingchuan Zhou, Xiangyu Guo, Matthias Grimm, Elias Lochner, Zhongliang Jiang, Abouzar Eslami, Juan Ye, Nassir Navab, Alois Knoll, Mohammad Ali Nasseri","doi":"10.1049/cit2.12242","DOIUrl":null,"url":null,"abstract":"Abstract Subretinal injection is a complicated task for retinal surgeons to operate manually. In this paper we demonstrate a robust framework for needle detection and localisation in robot‐assisted subretinal injection using microscope‐integrated Optical Coherence Tomography with deep learning. Five convolutional neural networks with different architectures were evaluated. The main differences between the architectures are the amount of information they receive at the input layer. When evaluated on ex‐vivo pig eyes, the top performing network successfully detected all needles in the dataset and localised them with an Intersection over Union value of 0.55. The algorithm was evaluated by comparing the depth of the top and bottom edge of the predicted bounding box to the ground truth. This analysis showed that the top edge can be used to predict the depth of the needle with a maximum error of 8.5 μm.","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"47 1","pages":"0"},"PeriodicalIF":8.4000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Needle detection and localisation for robot‐assisted subretinal injection using deep learning\",\"authors\":\"Mingchuan Zhou, Xiangyu Guo, Matthias Grimm, Elias Lochner, Zhongliang Jiang, Abouzar Eslami, Juan Ye, Nassir Navab, Alois Knoll, Mohammad Ali Nasseri\",\"doi\":\"10.1049/cit2.12242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Subretinal injection is a complicated task for retinal surgeons to operate manually. In this paper we demonstrate a robust framework for needle detection and localisation in robot‐assisted subretinal injection using microscope‐integrated Optical Coherence Tomography with deep learning. Five convolutional neural networks with different architectures were evaluated. The main differences between the architectures are the amount of information they receive at the input layer. When evaluated on ex‐vivo pig eyes, the top performing network successfully detected all needles in the dataset and localised them with an Intersection over Union value of 0.55. The algorithm was evaluated by comparing the depth of the top and bottom edge of the predicted bounding box to the ground truth. This analysis showed that the top edge can be used to predict the depth of the needle with a maximum error of 8.5 μm.\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/cit2.12242\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/cit2.12242","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

视网膜下注射是视网膜外科医生手工操作的一项复杂任务。在本文中,我们展示了一个强大的框架,用于机器人辅助视网膜下注射的针头检测和定位,该框架使用显微镜集成光学相干断层扫描和深度学习。对五种不同结构的卷积神经网络进行了评价。这两种体系结构之间的主要区别在于它们在输入层接收的信息量不同。当对离体猪眼进行评估时,表现最好的网络成功地检测到数据集中的所有针头,并以0.55的交联值对它们进行定位。通过将预测的边界盒上下边缘的深度与地面真实值进行比较,对算法进行评价。分析结果表明,利用顶缘可以预测针的深度,最大误差为8.5 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Needle detection and localisation for robot‐assisted subretinal injection using deep learning
Abstract Subretinal injection is a complicated task for retinal surgeons to operate manually. In this paper we demonstrate a robust framework for needle detection and localisation in robot‐assisted subretinal injection using microscope‐integrated Optical Coherence Tomography with deep learning. Five convolutional neural networks with different architectures were evaluated. The main differences between the architectures are the amount of information they receive at the input layer. When evaluated on ex‐vivo pig eyes, the top performing network successfully detected all needles in the dataset and localised them with an Intersection over Union value of 0.55. The algorithm was evaluated by comparing the depth of the top and bottom edge of the predicted bounding box to the ground truth. This analysis showed that the top edge can be used to predict the depth of the needle with a maximum error of 8.5 μm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
期刊最新文献
Guest Editorial: Knowledge-based deep learning system in bio-medicine Guest Editorial: Special issue on trustworthy machine learning for behavioural and social computing A fault-tolerant and scalable boosting method over vertically partitioned data Multi-objective interval type-2 fuzzy linear programming problem with vagueness in coefficient Prediction and optimisation of gasoline quality in petroleum refining: The use of machine learning model as a surrogate in optimisation framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1