挖掘隐藏的潜力:利用层次分析法、遥感和地理信息系统技术绘制地下水区

IF 4.5 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geomatics Natural Hazards & Risk Pub Date : 2023-10-19 DOI:10.1080/19475705.2023.2264458
Rahul S. Shelar, Sachin B. Nandgude, Chaitanya B. Pande, Romulus Costache, Gamal A. El-Hiti, Abebe Debele Tolche, Cao Truong Son, Krishna Kumar Yadav
{"title":"挖掘隐藏的潜力:利用层次分析法、遥感和地理信息系统技术绘制地下水区","authors":"Rahul S. Shelar, Sachin B. Nandgude, Chaitanya B. Pande, Romulus Costache, Gamal A. El-Hiti, Abebe Debele Tolche, Cao Truong Son, Krishna Kumar Yadav","doi":"10.1080/19475705.2023.2264458","DOIUrl":null,"url":null,"abstract":"Groundwater resource problems are increasing development and planning challenges due to climate change and overexploitation, necessitating assessments of their potential and productivity. The study area has been facing a groundwater level decline problem for many years, and these results can help increase the groundwater level in the basaltic rock area. In this research, we have worked on the demarcation and suitability of groundwater potential zones using GIS and Analytical Hierarchical Process (AHP) methods for the Urmodi River Basin. This research prepared eight thematic maps, that is, geomorphology, geology, drainage density, land use/land cover, elevation, lineament density and slope from satellite data and GIS methods, which play a primary factor in determining the proper groundwater potential zones. In this study, every thematic map was allocated weights depending on its specific characteristics and contribution to the groundwater potential capacity. The weights were determined using the AHP method, which considers the comparative significance of every layer about others. This weighting procedure allowed for a comprehensive assessment of the factors influencing groundwater potential in the Urmodi River basin. The resulting groundwater potential map was divided into four classes, that is, good, excellent, moderate, and poor. The study revealed that approximately 22.69% of the basin had excellent groundwater potential, 28.96% had good potential, 25.32% had moderate potential, and 22.92% had poor potential. These study findings suggest that a significant portion of the Urmodi River Basin exhibits good to moderate groundwater potential, indicating promising opportunities for sustainable groundwater utilization in the region. The groundwater potential zone map accuracy is 84% based on the Receiver Operating Characteristic (ROC) method. These results can have implications for sustainable groundwater resources and provide a framework for conducting similar assessments in other regions. The results can be more important for sustainable development goals and helpful in increasing groundwater levels in the area.","PeriodicalId":51283,"journal":{"name":"Geomatics Natural Hazards & Risk","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the hidden potential: groundwater zone mapping using AHP, remote sensing and GIS techniques\",\"authors\":\"Rahul S. Shelar, Sachin B. Nandgude, Chaitanya B. Pande, Romulus Costache, Gamal A. El-Hiti, Abebe Debele Tolche, Cao Truong Son, Krishna Kumar Yadav\",\"doi\":\"10.1080/19475705.2023.2264458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater resource problems are increasing development and planning challenges due to climate change and overexploitation, necessitating assessments of their potential and productivity. The study area has been facing a groundwater level decline problem for many years, and these results can help increase the groundwater level in the basaltic rock area. In this research, we have worked on the demarcation and suitability of groundwater potential zones using GIS and Analytical Hierarchical Process (AHP) methods for the Urmodi River Basin. This research prepared eight thematic maps, that is, geomorphology, geology, drainage density, land use/land cover, elevation, lineament density and slope from satellite data and GIS methods, which play a primary factor in determining the proper groundwater potential zones. In this study, every thematic map was allocated weights depending on its specific characteristics and contribution to the groundwater potential capacity. The weights were determined using the AHP method, which considers the comparative significance of every layer about others. This weighting procedure allowed for a comprehensive assessment of the factors influencing groundwater potential in the Urmodi River basin. The resulting groundwater potential map was divided into four classes, that is, good, excellent, moderate, and poor. The study revealed that approximately 22.69% of the basin had excellent groundwater potential, 28.96% had good potential, 25.32% had moderate potential, and 22.92% had poor potential. These study findings suggest that a significant portion of the Urmodi River Basin exhibits good to moderate groundwater potential, indicating promising opportunities for sustainable groundwater utilization in the region. The groundwater potential zone map accuracy is 84% based on the Receiver Operating Characteristic (ROC) method. These results can have implications for sustainable groundwater resources and provide a framework for conducting similar assessments in other regions. The results can be more important for sustainable development goals and helpful in increasing groundwater levels in the area.\",\"PeriodicalId\":51283,\"journal\":{\"name\":\"Geomatics Natural Hazards & Risk\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics Natural Hazards & Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475705.2023.2264458\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics Natural Hazards & Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475705.2023.2264458","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于气候变化和过度开采,地下水资源问题正在增加发展和规划方面的挑战,因此有必要对其潜力和生产力进行评估。研究区多年来一直面临着地下水位下降的问题,这些研究结果有助于提高玄武岩区的地下水位。在本研究中,我们利用GIS和层次分析法(AHP)对乌尔莫迪河流域地下水潜力带的划分和适宜性进行了研究。本研究利用卫星数据和GIS方法编制了地貌、地质、排水密度、土地利用/土地覆盖、高程、线形密度和坡度等8个专题图,这些专题图是确定地下水潜在带的主要因素。在本研究中,每个专题地图根据其具体特征和对地下水潜在容量的贡献分配权重。权重采用层次分析法确定,层次分析法考虑每一层相对于其他层的比较显著性。这一加权程序可以对影响乌尔莫迪河流域地下水潜力的因素进行综合评价。将所得地下水潜力图划分为好、优、中、差4个等级。研究结果表明,流域地下水潜力优、优、劣、劣分别占22.69%、28.96%、25.32%和22.92%。这些研究结果表明,乌尔莫迪河流域的大部分地区具有良好到中等的地下水潜力,表明该地区地下水可持续利用的良好机会。基于Receiver Operating Characteristic (ROC)方法的地下水潜势带图精度为84%。这些结果可能对可持续地下水资源产生影响,并为在其他区域进行类似评估提供框架。研究结果对实现可持续发展目标更为重要,并有助于提高该地区的地下水位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking the hidden potential: groundwater zone mapping using AHP, remote sensing and GIS techniques
Groundwater resource problems are increasing development and planning challenges due to climate change and overexploitation, necessitating assessments of their potential and productivity. The study area has been facing a groundwater level decline problem for many years, and these results can help increase the groundwater level in the basaltic rock area. In this research, we have worked on the demarcation and suitability of groundwater potential zones using GIS and Analytical Hierarchical Process (AHP) methods for the Urmodi River Basin. This research prepared eight thematic maps, that is, geomorphology, geology, drainage density, land use/land cover, elevation, lineament density and slope from satellite data and GIS methods, which play a primary factor in determining the proper groundwater potential zones. In this study, every thematic map was allocated weights depending on its specific characteristics and contribution to the groundwater potential capacity. The weights were determined using the AHP method, which considers the comparative significance of every layer about others. This weighting procedure allowed for a comprehensive assessment of the factors influencing groundwater potential in the Urmodi River basin. The resulting groundwater potential map was divided into four classes, that is, good, excellent, moderate, and poor. The study revealed that approximately 22.69% of the basin had excellent groundwater potential, 28.96% had good potential, 25.32% had moderate potential, and 22.92% had poor potential. These study findings suggest that a significant portion of the Urmodi River Basin exhibits good to moderate groundwater potential, indicating promising opportunities for sustainable groundwater utilization in the region. The groundwater potential zone map accuracy is 84% based on the Receiver Operating Characteristic (ROC) method. These results can have implications for sustainable groundwater resources and provide a framework for conducting similar assessments in other regions. The results can be more important for sustainable development goals and helpful in increasing groundwater levels in the area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomatics Natural Hazards & Risk
Geomatics Natural Hazards & Risk GEOSCIENCES, MULTIDISCIPLINARY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
7.70
自引率
4.80%
发文量
117
审稿时长
>12 weeks
期刊介绍: The aim of Geomatics, Natural Hazards and Risk is to address new concepts, approaches and case studies using geospatial and remote sensing techniques to study monitoring, mapping, risk mitigation, risk vulnerability and early warning of natural hazards. Geomatics, Natural Hazards and Risk covers the following topics: - Remote sensing techniques - Natural hazards associated with land, ocean, atmosphere, land-ocean-atmosphere coupling and climate change - Emerging problems related to multi-hazard risk assessment, multi-vulnerability risk assessment, risk quantification and the economic aspects of hazards. - Results of findings on major natural hazards
期刊最新文献
Drought driving mechanism and risk situation prediction based on machine learning models in the Yellow River Basin, China Dynamic association of slope movements in the Uttarakhand Himalaya: a critical review on the landslide susceptibility assessment Co-seismic characterization analysis in PWV and land-atmospheric observations associated with Luding Ms 6.8 earthquake occurrence in China on September 5, 2022 Application research on digital twins of urban earthquake disasters Numerical simulation and safety distance analysis of slope instability of ionic rare earth tailings in different rainy seasons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1